
 Science & Military 2/2021

15

DOI: https://doi.org/10.52651/sam.a.2021.2.15-27

ANALYSIS OF CURRENT TRENDS IN THE DEVELOPMENT OF DSLS AND THE
POSSIBILITY OF USING THEM IN THE FIELD OF INFORMATION SECURITY

Patrik HARNOŠ, Ľubomír DEDERA

Abstract: Use of an appropriate DSL can significantly reduce development time. This is due to the fact that DSLs are limited
to the use of terms relating to the explicit domain, which makes them much easier for programmers to understand and learn.
Despite these and other advantages of DSLs over GPLs, programmers will only exceptionally turn to DSLs in development
process. Therefore, in this article, we will look closer on what DSLs are, when it is appropriate to use them in a project and
when not. In the last part of this article, we will focus on the possibilities of using DSLs in the field of information security.

Keywords: Computer languages; DSL; Language workbenches; Alternative Computation Model; Information security.

1 INTRODUCTION

Domain-specific languages (DSLs) have been

part of computer science for several decades, but like
with other academic research in computer science,
their potential is not yet used too much in practice.
Nevertheless, many DSL experts are of the opinion
that in these days when it is more relevant to focus on
programming time than on processing time, the future
of programming languages lies in the use of DSLs.
The productivity of software development is just one
of the advantages of using DSLs, although one of the
most important ones. As for some DSLs, there are
even efforts to completely omit the programmer from
the software development process. However, in most
cases of DSLs, one needs to have at least basic
programming skills along with knowledge of a
particular domain to create useful software.
Therefore, in the process of developing a software
project, the programmer's communication with
domain experts is very important. Insufficient
communication with domain experts or customers is
the most common source of project failures during
development [1]. Understandable code created by
using a domain-appropriate DSL is an invaluable
advantage, at this stage of project development, over
general-purpose languages (GPLs).

The acronym DSL has gained popularity only
with the advent of Domain-specific modeling [2].
You can find many papers written about DSLs, and
probably every programmer has already worked with
some DSLs. In spite of that, most programmers
usually do not decide to implement their own DSL in
the project anyway. However, GPLs do not always
support the computational models of all projects. For
example, when you want to change behaviour at
runtime, or express aspects of behaviour in a more
self-sense. This has led to an increasing use of XML
configuration files, even in project where a custom
syntax would be more readable and not harder to do.
We may also encounter the use of parsers when
a fluent interface in their regular language would
be a lot less work. Martin Fowler, the author
of "Domain-Specific Languages", came up with
a hypothesis that this fact is caused by knowledge

gap. This hypothesis speaks to the fact that skilled
programmers have little awareness of the benefits of
DSLs and how to implement them. Therefore, in this
article, we will briefly summarize what DSLs are.

Domain Specific Language (DSL) is a computer
programming language with limited expressiveness
that is targeted to a particular kind of problem in
focused domain [1]. So obviously DSLs are not
Turing-complete. This is the main difference from a
general-purpose language that is aimed at any kind of
software problem. But this definition of DSL, like
most things in software, is not sufficiently defining,
and therefore there are a number of cases where
determining whether it is DSL or not is the reason for
disagreement.

For this reason, the experts have formed four main
elements identifying whether it is DSL:
A. DSL is used by people, so it is as simple as

possible to understand, but it is still executable by
computer.

B. DSL should be as smooth as possible, that is,
it consists not only of separate expressions but
also of composite ones.

C. DSL is created for use in a particular aspect
of the system in its domain and at the same time
should be as simple as possible to understand. For
these reasons, DSL should contain only the
necessary minimum functions to cover domain
requirements.

D. DSL is effective only when it is focused only on
a small domain.

2 TYPES OF DSLs

DSLs are mostly divided into two main
categories: external DSLs, internal DSLs, but DSLs
created by language workbenches can be recognized
as a third category [1].

An external DSL is a domain-specific language
represented in a separate language. An external DSL
has a custom syntax, but it may follow the syntax of
another representation such as XML. Host
application of external DSL uses text parsing
techniques to parse script written in this language.
External DSLs usually come with tools like IDEs that

Science & Military 2/2021

16

are designed to support specific functions of the
language. This can result in a much-improved user
and developer experience. Static analyses, code
completion, visualizations, debuggers, simulators and
all kinds of other niceties can be provided. These
features can improve the productivity of users
exponentially and they also make it easier for new
team members to become productive. Examples of
external DSLs that you have probably come across
include regular expressions, SQL, and XML
configuration files, but there are plenty of other less
known external DSLs. Good examples are textual
DSLs, which verbally describe graphical output, like
graph or diagram. This group includes, for example,
DOT and PlantUML.

In contrast to external DSLs, internal DSLs do not
include tool support like debuggers and testing tools
in its language design. Internal DSLs just define
specific way how to use host GPL in order to use it
effectively in specific domain. So, a script in an
internal DSL is valid also in its host GPL. The most
common way to accomplish this is by implementing
a library or framework and then manipulate this
framework through command-query API calls, or
alternatively by a DSL. In this view, a DSL is a more
understandable front-end to a library. That is why
internal DSLs are sometimes called fluent API. From
language design perspective, API defines the
vocabulary of the abstraction, whereas an internal
DSL adds a grammar [1]. So, the goal of developers
of an internal DSL is mostly to create a language with
understandable syntax for a domain expert, however,
without language tool support, this language cannot
increase productivity exponentially and it will
probably be unpopular among developers.

A language workbench is a term coined by Martin
Fowler in 2005. This term describes an environment
designed to help people create new DSLs. A language
workbench will typically include high-quality tools to
support the definition, reuse and composition of
domain-specific languages. To define the DSLs, the
workbench supports:
1. Defining the schema for a Semantic Model for the

language
2. Defining one or more rich editing environments

for the language
3. Defining the behavioural semantics for the

language, through a mix of interpretation and code
generation.

All of this is valuable, but the truly interesting

aspect of language workbenches is that they allow a
DSL designer to go beyond the traditional text-based
source editing to different forms of language.
Anyway, they did not become mainstream, but
developers continue to be interested in them and
many of them reckon that they can change
programming landscape significantly.

To be completely precise, internal and external
DSLs can also be divided into two groups, based on

how they are combined with other languages: to
fragmentary and stand-alone DSLs [1]. To put it
simply, fragmentary DSLs are modules of code inside
a GPL and such code is hardly understandable for
nonprogrammers. An example of an external
fragmentary DSL is SQL request to take action on
database inside some GPL. A good example of an
internal fragmentary DSL is unit testing. On the other
hand, stand-alone DSLs contain files consisting
exclusively of a DSL, and therefore there are
understandable for domain experts.

3 WHEN IT IS APPROPRIATE TO USE DSL

 After the previous sections, where we introduced

you to various DSL types, you can see advantages
of using DSLs in your project. However, this does not
mean that it is suitable to use one in every project. The
first obvious obstacle to the deployment of DSLs in a
project is the cost of building. This obstacle is
enlarged by the fact that developers are not used to
building them and therefore the deployment of DSLs
may require learning new techniques. And that can be
time consuming. However, if we can spend some time
on development of one or more DSLs in a project, we
are likely to benefit from this investment of time later
in project, in its easier testing and longer lifecycle. A
good example is HTML, well known domain specific
language. Technologies like web browsers have been
evolving from the beginnings of HTML, but this DSL
itself, representing domain logic, is still widely used.
This is ensured by the characteristics of well-designed
DSLs, and the resulting benefits. But you can create
well-designed DSLs only if you can clearly define its
scope. So, if we cannot exactly specify the domain of
DSLs in a project, their use would not be effective and
therefore we should not use them in such a project.

Now we have an idea when it is not appropriate to
develop DSLs, so let’s summarize why you should
consider using DSLs in your project by naming their
benefits. Firstly, a DSL helps knowledge workers
doing their job, because it captures errors. Next, but
maybe the most obvious advantage, is better
communication with domain experts, but only some
stand-alone DSLs fulfil this aspect (for example,
regular expressions do not make communication
easier). You can streamline communication with
client and domain experts by adding some kind of
visualization to your DSLs language support
portfolio. Great examples of how it can be done are
DOT and PlantUML.

DOT is a language for describing graphs, thanks
to which we can verbally define a graph and then,
using a program working with that language, generate
the graph in a graphical form. Generating graphs
using comprehensible commands is practical, but
DSLs can bring more added value to the project. For
example, PlantUML, which allows you to shape
different types of UML diagrams by textual based
commands, can provide a valuable tool to support

 Science & Military 2/2021

17

whole development process, e.g. for easier
versioning. UML can be modified by anyone without
special tools and PlantUML can be big help during
discussions with client and domain experts by
allowing immediate changes. For a better idea, we
have prepared an example of the code in PlantUML:

@startuml
title Use of a DSL\n Creation of
standardised documents
left to right direction
skinparam packageStyle rect
skinparam shadowing false

actor :Document creator: as user
actor :Template creator: as admin
note left of user: Inserts data into a template.
note left of admin: Inserts templates into the
database.

rectangle semanticModel{
(Add Data) as addData
(Add Template) as addTemplate
(Generate Document) as generate
(View Database) as database

addData.> generate: includes
user --> addData
user --> database
admin --> addTemplate
admin --> database
}
@enduml

We can edit this code during a discussion and,

by using a generator (for example, online
at http://www.plantuml.com), we can interpret
changes almost immediately. You can see output
of our PlantUML code, interpreted by generator,
in Figure 1:

Fig. 1 Use case diagram
Source: author.

Another aspect of using a DSL in any project is

the increase of productivity across whole project
lifecycle, but mostly during specification (feedback
cycles are much shorter), testing (verifying can be
done directly by domain experts), using, modifying

and maintaining. There are many well designed DSLs
that can greatly facilitate work within their given
scope. But in this article, as an example, we present
only one, LaTeX.

Name LaTeX denotes a high-quality typesetting
system; it includes unique DSL and other features
designed for creating technical and scientific
documentation. LaTeX runs on top of Donald E.
Knuth's TeX typesetting system. LaTeX is available
as free software [3]. LaTeX belongs to a group
of languages that receive the specified sequence
of commands on the input and interpret them
as a separate artifact — a document on output.
This is our example code in LaTeX:

\documentclass{article}
\usepackage[utf8]{inputenc}

\title{Pdf created by LaTeX}
\author{Patrik Harnoš}
\date{January 2021}

\begin{document}
\maketitle
\section{LaTeX}
LaTeX is a DSL.
\end{document}

We can easily convert this code to a Pdf document
by the “pdflatex.exe” application, which is a part of
LaTeX system.

Fig. 2 Example of using the "pdflatex.exe"
Source: author.

You can see a part of the Pdf document created by

“pdflatex.exe” in Figure 3. LaTeX is based on the
idea that the author of the document handles only the
text of the article, while the formatting is taken care
of by the document developers. Similar idea of DSLs
helping users effectively check and add data to
systems can be used in various domains including
information security.

Science & Military 2/2021

18

Fig. 3 Pdf created from example code
 Source: author.

4 DSLs IN THE FIELD OF INFORMATION

SECURITY

The field of information security follows the trend
of using DSLs in whole computer science. We can
say that there are just a few of them, mostly XML-
based, some of them are DSLs only in a narrower
point of view, but new ones are being developed. For
example, identity access management and security
auditing, as subfields of the information security,
have been enriched by several narrow-scoped
languages. So, we picked some DSLs to describe in
this chapter, and we divide them into these two
information security subfields.

4.1 Identity and access management

Most organizations still use legacy systems with

inbuilt authorization logic. Sometimes, one
organization contains a large number of information
systems and applications and each system or
application uses their own process for authorization.
Today, authorization has become more complex
because users within organizations and outside need
access to shared data and need to collaborate
efficiently. Therefore, it is a challenging task to
manage such legacy systems, custom authorization
systems. However, XACML offers a solution to this
problem, as a standard which is ratified by the OASIS
standardisation organization [4]. Before we start with
XACML, let’s take a look at its domain and access
control management. There are four main types of
access control:
1. Access Control Lists – Oldest and most basic

form of access control. This type is easy to
implement due to the use of maps, but it was
primarily adopted for use in operating systems.
So, it can become difficult to manage larger user
bases.

2. Role-base Access Control (RBAC) – This is a
static permission model which provides access
control to authorized users based on their role.
This type of approach reduces management
overhead and therefore it is used by the majority
of enterprises with more than 500 users.

3. Attribute-based Access Control (ABAC) – This
is a new, more flexible and fine-grained approach
in comparison with RBAC. Access rights are

granted to users through the use of policies that
combine attributes together. Because of it there is
no need to know the user prior to granting access.

4. Policy-based Access Control – This is the most
complex form of access control and it addresses
the requirement of larger enterprises to have more
uniform access control mechanism for the large
amount of organization units. This involves
specifying policies unambiguously using
XACML and using authorized attribute sources in
the enterprise.

So, now we know that XACML is used in access

control management, mostly for specifying policies
in Policy-based access control approach. But there is
much more behind the label XACML. XACML is
very popular as a fine-grained authorization method
among the community. XACML was introduced as a
standard by OASIS in 2003 and it defines an access
control policy language, request/response language
(protocol), and reference architecture. The policy
language is used to express access control policies
(who can do what, when). The request/response
language expresses queries about whether a particular
access should be allowed (requests) and describes
answers to those queries (responses). The reference
architecture proposes a standard for deployment of
necessary software modules within an infrastructure
to allow efficient enforcement of policies.

The XACML reference architecture illustrated
below, in Figure 4, consists of the following four
blocks:
1. Policy Administration Point (PAP): This entity

allows the administrator to create, update and
change a policy or policy set, by defining them in
XACML policy language. These defined policies
are stored in policy store. PAP makes policies
and policy sets available to the PDP by Policy
Retrieval Point (PRP). These policies or policy
sets represent the complete policy for a specified
target.

2. Policy Enforcement Point (PEP): The access
requester sends a request for access to the PEP
and this point performs access control by
enforcing authorization decisions. This is the
entity that sends the XACML request to the PDP
and receives back an authorization decision
(response).

3. Policy Decision Point (PDP): This entity
evaluates policies against access requests sent by
PEP. To provide the decisions, PDP may also
need to query a PIP to gather descriptive
attributes about the user or any other missing
attribute in the request.

4. Policy Information Point (PIP): If there are
missing attributes in the XACML request that is
sent by PEP, PIP would find them for the PDP to
evaluate the policy. PIP acts as a source of
attribute values.

 Science & Military 2/2021

19

Fig. 4 Diagram of XACML Architecture
Source: [18].

The most important part of XACML, for this

article, is XACML policy language structure and
syntax. XACML policy language is XML-based
because it is an industry standard and experts of this
domain are familiar with it. XACML supports policy-
based access control, based on attributes. XACML
categorizes attributes in policies into four groups:
subject (user, workstation, etc.), resource (server,
database, etc.), action (read, write, etc.) and
environment (SAML, J2SE, etc.). But from XACML
3.0, custom categories are also supported. The
elementary unit of policy is a Rule.

A Rule is a single statement using Boolean logic,
defined by RuleId, that specifies the individual rule in
the policy. Each Rule has a particular effect on an
access request (deny or permit the access). Each Rule
is composed of a Target and a Condition.

A Target is an XACML component that defines
categories applied on a policy. A Target consists of
AnyOf and AllOf components and each AllOf consists
of Match. Each Match contains only one particular
category to be matched with the request.

A Condition specifies the applicability of the rule
[5].

XACML policy language syntax, with
components mentioned above, is demonstrated on the
following example policy:

<Policy xmlns="urn:..." PolicyId="hr-admin-
access"...>
<Target>
<AnyOf>
<AllOf>
<Match MatchId="...function:string-equal">
<AttributeValue DataType="...#string">hradmin
</AttributeValue>
<AttributeDesignator AttributeId=".../role"
 Category="...:subject-category:access-
subject"
 DataType="...#string"
MustBePresent="true"/>
</Match>

</AllOf>
</AnyOf>
</Target>
<Rule Effect="Permit" RuleId="Rule-1">
<Target>
<AnyOf>
<AllOf>
<Match MatchId="...:function:string-equal">
<AttributeValue DataType="...#string">/Employee
</AttributeValue>
<AttributeDesignator
AttributeId="...:resource:resource-id"
 Category="...:attribute-category:resource"
 DataType="...#string"
MustBePresent="true"/>
</Match>
</AllOf>
</AnyOf>
<AnyOf>
<AllOf>
<Match MatchId="...:function:string-equal">
<AttributeValue DataType="...#string">GET
</AttributeValue>
<AttributeDesignator AttributeId="...:action:action-
id"
 Category="...:attribute-category:action"
 DataType="...#string"
MustBePresent="true"/>
</Match>
</AllOf>
</AnyOf>
</Target>
</Rule>
<Rule Effect="Deny" RuleId="Deny-Rule"/>
</Policy>

This reduced example of the policy permits only

GET access to the resources /Employee by everyone
with role hradmin. You can write XACML policies
with any XML editor, but there are more friendly
solutions how to create and publish similar, but
mostly more complex, policies to Policy
Administration Point (PAP). One of them is WSO2
Identity Server.

WSO2 Identity Server provides secure identity
management for enterprise web applications,
services, and APIs by managing identity and
entitlements of the users by including the role-based
access control (RBAC) convention, fine-grained
policy-based access control, and Single-Sign-On
(SSO) bridging. The Identity Server enables
enterprise architects and developers to reduce identity
provisioning time and guarantee secure online
interactions. WSO2 Identity Server uses XACML as
a tool for controlling access to applications. The
Identity Server supports XACML 3.0, which is based
on Balana XACML implementation. The source
code, distribution and documentation are available
for free and it is released under Apache Software
License Version 2.0, one of the most business-

Science & Military 2/2021

20

friendly licenses available today. The XACML
engine of the WSO2 Identity Server has two major
components Policy Administration Point (PAP) and
Policy Decision Point (PDP) [4].

Usage of XACML in WSO2 is demonstrated in
the figures below. The Identity Server enables you to
create or edit policies in PAP, not only by using XML

editor, but with five other creation methods. You can
use Simple, Basic and Standard Policy Editors or
Policy Set Editor. Importing Existing Policy is also
available. As you can see in Figure 5, thanks to
Simple Policy Editor, creating a policy is a matter of
filling in its name, description, and defining which
role can perform what actions on which resources.

Fig. 5 Creation of example policy in the Simple Policy Editor
Source: author.

Fig. 6 Part of the XML code of example policy created in Simple Policy Editor
Source: author.

Fig. 6 shows a part of the example policy, created

using Simple Policy Editor, displayed in XML. As
you can see, this policy specifies rules for the role
hradmin. Before we can publish and test this policy,
we need to create user with this specific role.

As you see in Fig. 7, this is not a problem because
the Identity Server enables you to create, maintain
and terminate user accounts along with user identities
across multiple systems including Cloud applications.

Testing of a policy is also very intuitive by creating
resource request in WSO2 request editor. You just
need to fill XACML attributes in request. Then,
WSO2 Carbon (componentized middleware
platform) will evaluate request according to policy
and informs you about the response (deny, permit or
not applicable when attributes in request are not
specified in the policy).

 Science & Military 2/2021

21

Fig. 7 User with hradmin rule
 Source: author.

Fig. 8 Denied response to the request
Source: author.

Fig. 8 above shows a denied response sent by

identity server as an answer to the request. Response
is denied because user pato in hradmin role is not
allowed to post in /Customer resource based on our
tested policy. On the other hand, request from user
pato to post in /Employee resource is in accordance
with our example policy, so it is permitted as you can
see in Fig. 9.

Fig. 9 Permitted response to the request
Source: author.

So, at the end we can say that XACML is very

viable and successful DSL because of robustness of
XACML and support from identity management
environments like WSO2. The main advantage of
XACML is its extensibility. A good example of that
is in the GeoXACML. It defines a geo-specific
extension standardised by Open Geospatial
Consortium (OGC), which allows location-based
authorisation where the access control policy can
contain geographic primitives (points, lines, polygons

etc.) as well as operations on these (contains, within,
distance etc.) within the authorisation policy. This is
quite a unique feature of XACML. XACML from
version 3.0 and GeoXACML meet changing
requirements from developers who prefer the JSON
format over XML by enabling encoding based on
JSON. GeoXACML standard defines geospatial data
interchange format based on JSON, with name
GeoJSON. There are more languages that can be
included in the group of DSLs in the field of access
control, but we are not describing them in detail here.
It is because they are similar to XACML in terms of
the syntax (they are all XML or JSON based) and also
because they are DSLs only from a certain point of
view.

SAML (Security Assertion Markup Language)
is an open XML security standard for exchanging
authentication and authorization data between an
identity provider and a service provider and it is also
an XML-based markup language for access-control
decisions statements.

Privacy and Identity Management for Europe
(PRIME) project has developed a privacy-aware
access control policy language and a data handling
policy language able to protect user’s personal
information and to provide a framework that can be
smoothly integrated with current architectures and
online services. PRIME defines three types of privacy
policies, Access control, Release and Data handling
policies, to fully achieve privacy-aware access
control system [6].

A P3P Preference Exchange Language
(APPEL) is a policy language which enables users to
specify their privacy preferences. Language
(APPEL), similarly to PRIME languages, proposes a
XML-based language for regulating secondary use of
data and provides restrictions on the recipients. Main
difference with PRIME languages is that users in fact
can only accept the server privacy practices or stop
the transaction, APPEL does not support definition of
policies based on attributes of the recipients and
protection against releases to third parties.

Rei is a policy language based in OWL-Lite
(OWL-Lite uses only some features of Web
Ontology Language which is used to define how
applications process content of information) that
allows policies to be specified as constraints over
allowable and obligated actions on resources in the
environment [7].

Web Services Policy is policy layer standard and
a simple language that has four elements - Policy, All,
ExactlyOne and PolicyReference - and two attributes
- wsp:Optional and wsp:Ignorable. It offers
mechanisms to represent combinations of capabilities
and requirements, of policies and to associate them
with Web service metadata constructs [8].

ODRL (Open Digital Rights Language)
is a licencing standard and a policy expression
language that provides flexible and interoperable
mechanisms to support transparent and innovative

Science & Military 2/2021

22

use of digital content in publishing, distributing and
consuming of digital media across all sectors and
communities.

4.2 Security auditing and system monitoring

Computer security has become increasingly

important and security auditing is one of the
techniques to detect vulnerabilities and schedule a
procedure to reduce them before possible attack. The
goal of every company, using some information
system, should be to properly implement security
guidance, as target computers need to be hardened
and continuously monitored during their lifecycle.
Organizations can achieve this by implementing their
security policy in the form of automation protocol
SCAP with its XML based languages OVAL, OCIL,
XCCDF and ARF.

Security Content Automation Protocol (SCAP)

is a collection of standards managed by National
Institute of Standards and Technology (NIST). It was
created to enable users to perform the security audit
on multiple remote systems from a single, centralized
environment and also to provide a standardized
approach for checking system security configuration
settings, monitoring systems for signs of compromise
and automatically verifying the presence of patches.
Users can achieve it by using SCAP Workbench, GUI
tool that serves as an SCAP scanner and provides
functionality for SCAP content. SCAP includes
languages [9]:
- OVAL: The Open Vulnerability and Assessment

Language is an XML-based community standard
and language for making logical assertions about
the state of an endpoint system by a three-step
assessment process: representing configuration
for testing; analysing the system for the presence
of vulnerability, configuration, patch state, etc.;
and reporting the results which can be transferred
across the entire spectrum of information security
tools and services.

- XCCDF: A language to express, organize, and
manage security guidance that references OVAL.

- OCIL: The Open Checklist Interactive Language
defines a framework to provide a standard way of
querying a human user. It represents a set of
questions to a user and interprets responses to
these questions. Although the OCIL specification
was developed for use with IT security checklists,
other possible use cases include research surveys,
academic course exams, and instructional
walkthroughs.

- ARF: Asset Reporting Format is a language to
express the transport format of information about
assets, and the relationships between assets and
reports.

The Insider Threat Prediction and

Specification Language (ITPSL) is an external

XML based DSL created to provide a systemic way
to describe insider threats and misuse incidents. This
is an early language compiler prototype and its
underlying insider threat monitoring framework are
not fully released but they have huge potential
because various information security surveys and
case studies indicate the importance and
manifestation of the insider threat problem. ITPSL
can be described as a specialized language that is able
to encode system level data made by legitimate user
actions, in order to create the process of misuse threat
prediction. ITPSL can be of help to domain experts
like the security analyst, as well as the IT
administrator in charge of system operation and
security issues. Both of these types of domain experts
should be able to examine insider misuse incidents
and express insider misuse scenarios by using the
language semantic. The process of doing so starts
with the security analyst writing the description of a
particular insider misuse scenario, using the ITPSL
semantics. The signature is validated by a compiler
that translates the signature directives to query
commands and uses a logging infrastructure (ITPSL
use LUARM audit engine, relational model and SGL
interface to audit logs), in order to examine whether
the specified criteria exist in the system. The
Evaluated Potential Threat is score indicating the
likelihood of threat occurring according to a given
detected conditions [10].

Panoptis is an anomaly detection system for

security administrators, based on Unix process-
accounting records, which consists of a single
program that reads accounting records and updates
profile tables, optionally reporting cases that fall
outside the existing profiles. Its arguments are a DSL-
based configuration file that directs the program
operation, the database to update, the interval to
operate upon, and an optional list of process
accounting files. Panoptis is quite unique for using
DSL-based instead of traditional XML-based
configuration files which are used more often for real
time setting of a system. Panoptis was published in
2002, so it could be a milestone in the new trend of
using custom made DLSs in configuration files.

PowerShell is still used in managing operation

systems from Microsoft, so to be more complex we
can mention a PowerShell module that was
implemented as a DSLs or even Pester, testing and
mocking framework for PowerShell, which allows to
create a mini-DSL for writing your tests. Pester uses
a simple set of functions: Describe, Context, It,
Should and Mock. So, your test can be readable and
fluent [11]:

It 'Earth is the third planet in our Solar System' {
 $allPlanets = Get-Planet
 $allPlanets[2].Name | Should -Be 'Earth'
}

 Science & Military 2/2021

23

As a conclusion of this chapter, we can see that in
the field of information security there are mostly
XML-based DSLs. These languages meet the DSL
properties we mentioned in the introduction, but like
the original XML, universal data exchange
languages, they are more machine-readable rather
than smooth languages. But nowadays we can create
smoother DSLs thanks to language workbenches.

5 LANGUAGE WORKBENCH

The definition of language workbench is provided

in the second chapter of this article, but without
mentioning examples. There are many language
workbenches under active development, both in
industry and academia. Notable examples include
Jetbrains MPS, MetaEdit+, Xtext, Rascal, Spoofax,
SugarJ, Melange, Cedalion, Epsilon, EMFText,
Intentional Software, Whole Platform, DrRacket,
Eco, Ensō, MontiCore, and others. Anyway, there is
a lot to choose from, but the choice should depend on
the type of DSL that will be built. It is caused by the
fact that some language workbenches are suitable for
textual languages, others for graphical, but most
exciting and powerful are projectional editors.

5.1 Textual DSLs

Xtext is an open-source framework and a solid

solution for developing programming languages and
DSLs. Unlike standard parser generators, Xtext
generates full infrastructure, including parser, linker,
typechecker, compiler as well as editing support for
Eclipse, any editor that supports the Language Server
Protocol (for example IntelliJ) or a web browser. But
for advanced features you have to be familiar with
Eclipse technology, for example Xtext produces
parser using Eclipse Modeling Framework (EMF).
You can see simple Hello World grammar definition
from Eclipse examples in the code below [12].

grammar org.example….
generate domainmodel
"http://www.example.org/..."

Model:
greetings+=Greeting*;
Greeting:
'Hello' name=ID '!';

textX is very similar alternative because it was

inspired by Xtext. Major difference between textX
and Xtext is that textX is a Python framework, it does
not use EMF, it does not generate code and editor
support like Xtext because it uses metaprogramming
power of Python to define classes in memory [13].

Spoofax is an open-source language workbench
for creating textual DSLs. It can generate parsers,
type checkers, compilers and interpreters. But it is
more academic than an industrial-grade language
workbench aimed to separate definition and
implementation of a language. Spoofax can be used

inside Eclipse or IntelliJ. It is based on a set of hi-
level declarative DSLs (meta-languages) aimed at
various concerns of textual DSL creation process.
With this approach, designers are not distracted by
language implementation details. These meta-
languages abstract language implementation and
focus on the language design. For example, Spoofax
users are addressing the issue 'what is the syntax of
my language?', instead of 'how do I implement a
parser for my language?' [14].

5.2 Graphical DSLs

In comparison with textual languages, graphical

languages are more user friendly for domain experts
in many cases. But on the other hand, they require
building specific editors to be used and they are less
flexible than textual languages. So, they are less
frequent and even the tools to build graphical they are
not fully tuned and easy to use. GMF is a good
example of this statement.

Graphical Modeling Framework (GMF) can
help you when you need extreme flexibility to build
your very own graphical editor. The core of GMF is
GMF Runtime, a Java based framework to run
graphical editors inside Eclipse. It uses EMF,
similarly to Xtext, to define the structure of your data
and then GMF permits to specify how the different
elements are represented, how their connections are
displayed and so on. It provides a highly customizable
way to render any model elements with several kinds
of graphical shapes by filling out the form and editing
the details of each element in a separate panel. An
example of a GMF editor is displayed in Fig. 10
below.

Fig. 10 Example usage of GMF
Source: [19].

GMF is flexible and powerful with potential but

without solid documentation and supporting
community, therefore it offers a painful experience
for the language designer. For this reason, there are
tools like Eclipse Eugenia and Eclipse Sirius, built on
top of GMF to make better user experience. Sirius is
more complex and it uses model introspection instead

Science & Military 2/2021

24

of code generation approach. It is decently supported,
and it offers reasonable usability.

MetaEdit+ is a commercial solution among
graphical language workbenches. It provides a simple
metamodeling language and tool for designing
language concepts, their properties, associated rules,
symbols, checking reports and generators. MetaEdit+
makes modeling tool development fast, intuitive, and
cost-effective by allowing you to get started straight
away with the reuse of language components from
extensive library [15].

5.3 Projectional editors

Projectional editing is a superset of the graphical

editing, so you can define graphical languages using
a projectional editor like Jetbrains MPS, but
projectional editors are much more flexible than
typical graphical languages. Projectional editors offer
combination of different notations and support all
sorts of representation you need for your case. With
projectional editing, the abstract representation is the
core definition of the system and projectional editor
shows a projection of the content stored on file, as you
can see in Fig. 11.

It is a similar solution to graphical workbenches,
but different in comparison with a text editor which
stores user changes directly to a disk. When a user
interacts with projection, in the projectional editor,
he can edit text, tables or diagrams, but the editor

translates those interactions and they will be stored in
a different format like XML or even binary. As a
result, while thinking about your editable
representations you actively think about how an
editor works with them. This leads to different ideas
than you would get from a purely passive editable
representation such as text. The point is that you can
work with those files only inside their special editor
[1].

JetBrains MPS (Meta Programming System
developed by JetBrains) is an extremely powerful tool
for designing domain-specific languages and it is the
most mature projectional editor available now. It uses
projectional editing which allows overcoming the
limits of language parsers, and building DSL editors,
such as ones with tables and diagrams. It implements
language-oriented programming. MPS combines an
environment for language definition, a language
workbench, and an Integrated Development
Environment (IDE) for such languages. MPS can be
useful to build families of interoperable languages
with advanced tooling to describe the logic of your
problems, to define tests and documentation. This
platform has built in all sorts of simulators, debuggers
and tools to analyse code coverage. In Fig. 12 below
there is a demonstration of MPSs sample named
ChemMastery from chemistry knowledge worker
perspective. Model situation is that a domain expert
wants to create and maintain models expressed in the
provided DSL.

Fig. 11 Manipulating representations with a language workbench
Source: [20].

 Science & Military 2/2021

25

Fig. 12 MPSs sample named ChemMastery from user perspective
Source: author.

Whole Platform is another overlooked but good

language workbench supporting existing formats and
adapting advanced language-engineering approaches.
This editor also offers the idea of Pattern Language,
it means that you can take the model and define its
variability points that could be filled with values from
another model.

There are more projectional editors like
Intentional Platform or Modeling SDK for Visual
Studio, but International Platform is not publicly
available yet. Modeling SDK offers valuable
alternative to MPS for language developers who
prefer working with Microsoft Visual Studio. DSL
designed in this kit can be distributed as part of a
Visual Studio Integration Extension (VSIX) package,
so users can work with the DSL in Visual Studio [16].
The user interface of DSL Tools solution in Visual
Studio will resemble the following Fig. 13:

Fig. 13 Domain-Specific Language Tools User Interface
Source: [16].

You can also use Windows Forms to display the

state of a DSL model, instead of using a DSL
diagram. [17].

6 CONCLUSION

One of the goals of this work was to get ourselves

familiar with the DSLs and their potential in
information security, and with language
workbenches. This is accomplished and we can focus
on creating an experimental DSL for the field of
information security. Based on the information
written in this article to date, we know that new DSLs
have been developed in this area of computer science
in recent years, but the majority of them are XML-
based. We also know that if we want to create an
efficient and popular DSL, it should be as readable
and simple as possible, but at the same time it must
support all common tasks performed by domain
experts.

Our challenge is to create a DSL that would allow
knowledge workers to effectively control and add
data to the system based on a template set up by the
organization. Initial use case diagram of this DSL is
in Figure 1. After writing this article, we have a solid
idea of the capabilities of various types of language
workbenches and we can conclude that we will
probably use one of the projectional editors, such as
JetBrains MPS, to create a DSL.

Science & Military 2/2021

26

References

[1] FOWLER, M. and R. PARSONS. Domain-

Specific Languages. Massachusetts: Addison-
Wesley, 2010. ISBN-10: 0-321-71294-3.

[2] RAJA, A. and D. LAKSHMANAN. Domain
Specific Languages. In: International Journal
of Computer Applications (0975 - 8887),
Vol. 1 – No. 21, 2010. Available at:
https://doi.org/10.5120/37-640

[3] LaTeX – A document preparation system.
[Online]. [accessed 20. January 2021]. Available
at: https://www.latex-project.org/

[4] WSO2 Identity Server Documentation - Access
Control and Entitlement Management. [Online].
[accessed 30. January 2021]. Available at:
https://is.docs.wso2.com/en/latest/get-
started/access-control-and-entitlement-
management/#introducing-xacml

[5] RAMLI, C. D. P. K., H. R. NIELSON and F.
NIELSON. The Logic of XACML – Extended.
2011, [Online]. [accessed 30. January 2021].
Available at:
https://export.arxiv.org/pdf/1110.3706

[6] PRIME, Privacy-aware Access Control Policies.
[Online]. [accessed 1. February 2021]. Available
at: https://doi.org/10.1007/978-3-642-27739-
9_827-2

[7] KAGAL, L. Rei: A Policy Language for the Me-
Centric Project. Palo Alto: HP Laboratories,
2002, [Online]. [accessed 1. February 2021].
Available at:
https://www.hpl.hp.com/techreports/2002/HPL
-2002-270.pdf

[8] Web Services Policy 1.5 – Primer. W3C
Working Group Note, 2007, [Online]. [accessed
1. February 2021]. Available at:
https://www.w3.org/TR/ws-policy-
primer/#introduction

[9] PRICE II, R. and M. PREISLER. Practical
OpenSCAP – Security Standard Compliance and
Reporting. Red Hat Summit, 2016. [Online].
[accessed 1. February 2021]. Available at:
https://www.redhat.com/files/summit/session-
assets/2016/SL45190-practical-
openscap_security-standard-compliance-and-
reporting.pdf

[10] MAGKLARAS, G. and S. FURNELL. The
Insider Threat Prediction and Specification
Language. INC, 2012. [Online]. [accessed 1.
February 2021]. Available at:
https://www.semanticscholar.org/paper/The-
Insider-Threat-Prediction-and-Specification-
Magklaras-
Furnell/4588ae6687100750954592c9a7b59dd1
d7df0cf1?p2df

[11] Pester – Quick Start. Pester Team, 2019.
[Online]. [accessed 1. February 2021]. Available
at: https://pester.dev/docs/quick-start/#what-is-
pester

[12] Xtext – documentation. Eclipse, 2015. [Online].
[accessed 1. February 2021]. Available at:
https://www.eclipse.org/Xtext/documentation/i
ndex.html

[13] DEJANOVIĆ, I., R. VADERNA, G.
MILOSAVLJEVIĆ and Ž. VUKOVIĆ. TextX:
A Python tool for Domain-Specific Languages
implementation. ScienceDirect, 2017. [Online].
[accessed 1. February 2021]. Available at:
https://doi.org/10.1016/j.knosys.2016.10.023

[14] Documentation — Spoofax 2.5.13
documentation. Spoofax, 2016. [Online].
[accessed 1. February 2021]. Available at:
https://spoofax.readthedocs.io/en/latest/source/
dev/doc.html

[15] MetaEdit+ Domain-Specific Modeling tools.
MetaCase. [Online]. [accessed 1. February
2021]. Available at:
https://www.metacase.com/products.html

[16] Getting Started with Domain-Specific
Languages - Visual Studio. Microsoft Docs,
2016. [Online]. [accessed 1. February 2021].
Available at: https://doi.org/10.1007/978-1-
4842-4382-4_1

[17] Create a Windows Forms-Based Domain-
Specific Language - Visual Studio. Microsoft
Docs, 2016. [Online]. [accessed 1. February
2021]. Available at:

 https://docs.microsoft.com/en-
us/visualstudio/modeling/creating-a-windows-
forms-based-domain-specific-
language?view=vs-2019

[18] 100 % Pure XACML. Axiomatics, 2013.
[Online]. [accessed 1. February 2021].
Available at: https://www.axiomatics.com/100-
pure-xacml/

[19] Let’s solve once for all the Eclipse GMF copy-
paste problem and then forget about it.
Wordpress.com - esalagea, 2011. [Online].
[accessed 1. February 2021]. Available at:
https://esalagea.files.wordpress.com/2011/04/w
orkflowstudioview1.jpg

[20] FOWLER, M. ProjectionalEditing.
ThoughtWorks, 2008. [Online]. [accessed 1.
February 2021]. Available at:
https://martinfowler.com/bliki/ProjectionalEditi
ng.html

Dipl. Eng. Patrik HARNOŠ
Armed Forces Academy of General M. R. Štefánik
Department of Informatics
Demänová 393
031 01 Liptovský Mikuláš
Slovak Republic
E-mail: harnos.p@gmail.com

 Science & Military 2/2021

27

Assoc. Prof. RNDr. Ľubomír DEDERA, PhD.
Armed Forces Academy of General M. R. Štefánik
Department of Informatics
Demänová 393
031 01 Liptovský Mikuláš
Slovak Republic
E-mail: lubomir.dedera@aos.sk

Patrik Harnoš is a System engineer at the Ministry
of Defence in Bratislava. In 2018 he graduated at the
Armed Forces Academy in Liptovský Mikuláš with
his thesis focused on Android application
development. He is currently a PhD student
researching DSLs in the field of Information Security.

Ľubomír Dedera works as an Associate Professor at
the Department of Informatics, Armed Forces
Academy in Liptovský Mikuláš. He graduated
(RNDr.) from the Faculty of Mathematics and
Physics, Comenius University in Bratislava in 1990.
He received a PhD. degree in Artificial Intelligence
from the Military Academy in Liptovský Mikuláš in
1997. His research interests include computer
languages, computer security and artificial
intelligence.

