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Abstract: This study focuses on the development of a visual system designed to facilitate object detection for the Spinbotics 
robotic arm in spatial environments. The primary objective is to enable accurate detection and classification of diverse objects, 
enhancing the arm's capability to grasp and manipulate items effectively. The system employs the YOLOv7 deep neural 
network, fine-tuned using transfer learning on a local computing infrastructure. Compared to traditional methods like R-CNN 
and SSD, YOLOv7 offers superior real-time processing capabilities and efficiency, making it well-suited for dynamic 
environments. Through extensive training and testing, the system demonstrates robust performance in detecting objects across 
varied scenes and identifying optimal grasp points. This research underscores the effectiveness of integrating advanced 
computer vision techniques to enhance the operational efficiency and versatility of robotic manipulators in real-world 
applications. 
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1 INTRODUCTION 
 

The aim of this task is to design and test a visual 
system capable of detecting various objects in space 
that the robotic manipulator can grasp and transfer. 
The system needs to learn, reliably detect,  
and classify these objects in different scenes  
and determine the position of the point where  
the object can be grasped by the arm. The process  
of learning and transferring objects is designed  
with user assistance. 

 

 
 

The chosen sensor for this task is the Intel 
RealSense D455 camera. This is a stereoscopic depth 
camera with a global shutter and compact dimensions 
(124 mm x 26 mm x 29 mm) with USB-C 
connectivity. The camera is supported in ROS2 (robot 

operating system) thanks to the realsense-ros driver. 
The sensor outputs both RGB and depth images, 
combining which we obtain a colored 3D point cloud. 
To train and use the model, a computer with an Nvidia 
graphics card is required, the GTX1070m card 
 is used. The camera is mounted on the Spinbotics 
robotic arm (Fig. 1) using a 3D printed holder, 
positioned between the fifth and sixth axes of the arm 
near the end effector (Fig. 2). The camera  
is temporarily connected via a USB-C cable routed 
externally along the robot, with future plans 
for connection through the robot’s tool connector. 
 

 

 
 

Fig. 1  Spinbotics 6-axis Serial Modular Robot 
Source: www.spinbotics.com 

Fig. 2  Placement of the Intel RealSense D455 camera 
on the Spinbotics Robotic Arm 

Source: author. 



Science & Military 1/2024 

40 
 

2 DATA COLLECTION AND PREPARATION 
 
 For development and initial testing, six objects 
were selected: a wooden cube, a wooden prism,  
and a wooden cylinder. A rod, a coin, and a ring 
 are made of metal. The challenge is to correctly 
distinguish individual objects despite their very 
similar shapes from certain viewing angles 
(cube/prism and coin/ring). 

The training dataset was created by capturing  
the objects on a contrasting surface from multiple 
viewing angles and distances (Fig. 3), as well  
as various groups and arrangements of objects. 
Hundreds of such captured samples underwent 
manual annotation in the YOLO (You Only Look 
Once) [1] standard format. Each image was 
accompanied by a corresponding .txt file with  
the position of the rectangle and the object identifier 
on a separate line.  
 

 
To expand the dataset, several augmentation 

methods were used, where the resulting training 
image is composed of multiple images from the 
dataset with slightly altered properties such as HSV 
(hue, saturation, value) [2], rotation of the original 
image, translation, scale, etc. We used the following 
methods: changing HSV parameters within a range  
of ±30 %, which allows us to simulate different 
lighting conditions, color distributions and brightness 
levels. We also used rotation within a range of -15  
to 15 degrees, translation within ±30 %, and scaling 
within ±20 %. Finally, we used vertical mirroring 
method to the images. We did not use perspective 
changes or shear deformations. 

These parameters contribute to robust detection 
 in other environments. 

The collection and extensive annotation will  
be automated using depth camera data and the 
position of the robotic arm in the future. For 
automated dataset collection of new objects, a single 
object on a contrasting surface at a known position  
is scanned, around which the robot plans a trajectory 

to capture the object from as many viewing angles  
as possible. 

Each training batch includes a diverse set  
of images, generated by applying different 
augmentations (Fig. 5). 

 

 

 
3 MODEL TRAINING 

 
The detector is based on the YOLOv7 [1] deep 

neural network. This single-shot detector was chosen 
based on previous experience with this model and its 
good real-time detection capabilities. YOLOv7  
is fine-tuned on custom data using transfer learning. 
In this method, parameters, weights resulting from 
long training on different objects from the COCO 
(Common objects in context) dataset [3]. 
Significantly more powerful hardware was used.  
In our case, we train locally on a computer with  
an Nvidia graphics card, and such training takes only 

 
 

Fig. 4  Multiple augmentation methods were applied 
 to the original image of wooden prism object. First row 

(left-to-right): original image, altered HSV values; second 
row: rotation + scale, altered HSV values, vertical 

mirroring + rotation. 
Source: author. 

 
 

Fig. 5  Sample training batch 
Source: author. 

 

Fig. 3  Cube annotation 
Source: author. 
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a few hours since only the weights of the last layers 
of the network are changed.  

For training, we always create a dataset split, 
typically in an 80:20 ratio, where 80 % of the images 
are used for training and 20 % for testing detection 
accuracy [4].  

The success of the training is indicated  
by a confusion matrix (Fig. 6). Training continues 
until detection accuracy stabilizes; in this case,  
we trained for 700 epochs. 

 
 

 

 
 
4 TESTING THE TRAINED NEURAL 

NETWORK 
 
 The robotic arm should be able to select various 
stored objects from a view of the scene and move 
them from their original location to a new place.  
A database of known objects will be available, from 

which the user can choose which objects the robot 
should manipulate.  

The trained detector is then integrated into  
the ROS2 environment. Object detection occurs only 
from the RGB image, with the detector outputting  
the coordinates of the rectangle in the image for  
the detected object. 

After determining the centroids of the rectangles, 
their position in the 3D space is calculated by 
projecting the 2D point from the calibrated depth 
image. The depth image is pre-processed using 
algorithms to fill in holes and filter out noise. With 
our hardware, the detector reliably distinguishes 
objects at a sampling rate of 15fps, which is sufficient 
for this type of task. Thus, the robot has information 
about the position of all recognized objects in the 
given scene. Measuring the distance of objects with 
the chosen camera is possible from a distance of 
400 mm. 

The method for selecting a candidate for grasping 
and the method of grasping is determined by the user. 
Either the object closest to the robot's end effector  
or the object with the most space around it to avoid 
collision with surrounding objects can be selected. 

The images show the detection of objects in the 
scene (Fig. 9) and the estimation of the centroid 
distance of all “cube” type objects in the point cloud 
(Fig. 10), with the cube position marked in green  
in the rviz2 environment (Fig. 11). 

 

 

Fig. 6  Confusion Matrix after four hours of training 
Source: author. 

Fig. 7 Comparison of the YOLOv7 model's success  
and detection time with its previous versions  

Source: [1]. 

 

 
 

Fig. 8  Detected object in the RGB image 
Source: author. 
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5 DISCUSSION 
 

Our YOLO-based detector offers several key 
advantages that make it an excellent choice for  
a visual system. Firstly, it excels in speed  
and efficiency. Unlike traditional methods that 
process images multiple times at varying scales, 
YOLO treats object detection as a single-step process, 
predicting bounding boxes and class probabilities 
directly from full images. This streamlined approach 

reduces computation time, making YOLO well-suited 
for real-time applications. 

Moreover, YOLO’s unified architecture processes 
images in a single pass, enhancing accuracy  
and performance. It learns generalized object 
representations effectively, which improves its ability 
to detect a wide range of objects, even in complex 
scenes. This contrasts with other detectors that may 
compromise between speed and accuracy. 

Compared to alternatives like R-CNN (Region-
based Convolutional Neural Network) [6],[7]  
and SSD (Single Shot Multibox Detector) [8], YOLO 
stands out for its real-time processing capability. 
Traditional methods often rely on multi-stage 
pipelines, resulting in slower performance. While 
SSD offers real-time processing, YOLO frequently 
matches or exceeds its detection accuracy with 
simpler implementation. 

Additionally, YOLO’s flexibility in model size 
allows deployment across various hardware 
platforms, from powerful servers to edge devices with 
limited computing resources. This adaptability  
is crucial in robotics applications, where deployment 
environments vary widely. 

In contrast to expensive industrial vision systems, 
our YOLO-based solution offers cost advantages. 
Industrial systems typically require specialized 
hardware and software, driving up costs. In contrast, 
our system leverages affordable, off-the-shelf 
components without sacrificing performance. 

Furthermore, our visual system operates locally, 
eliminating the need for reliance on costly cloud 
services. Many industrial systems depend on cloud-
based processing, which incurs ongoing expenses and 
requires consistent internet connectivity. Our local 
processing approach ensures data security and 
reduces operational costs, making it suitable for 
environments with unreliable connectivity or strict 
privacy requirements. 

Overall, the YOLO-based visual system strikes a 
balance between speed, accuracy, and versatility. Its 
real-time performance and cost-effectiveness are 
particularly beneficial for applications such as 
autonomous driving, security surveillance, and 
industrial automation, where precise object detection 
is critical. 

By adopting the YOLO detector, our visual 
system not only meets the demands of real-time 
object detection but also provides a practical, cost-
efficient solution compared to many industrial vision 
systems. 
 
6 FUTURE DEVELOPMENTS 
 
 The current solution has not yet been tested with 
the actual Spinbotics 6-axis Serial Modular Robot. 
Further development of the task will proceed after 
verifying the correctness of the proposed system. 
Gradually, efforts will focus on automating data 
collection and annotation, optimizing the learning 

 

Fig. 11 Candidates for the robot to grasp objects labeled  
as "cube" 

Source: author. 
 

 

Fig. 10 Position of points detected on objects in 3D space 
Source: author. 

 
 

Fig. 9 Output of the trained neural network  
on a series of test images from the dataset 

Source: author. 
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process, designing the user interface, and specifying 
the use of the proposed system for a real task with a 
different set of objects. 
 
7 CONCLUSION 
 

This study presents the design and 
implementation of an object recognition system for 
the Spinbotics robotic arm, leveraging the Intel 
RealSense D455 camera and YOLOv7 neural 
network. Challenges such as distinguishing similar 
objects and ensuring robust detection in varied 
environments were addressed. The system reliably 
detects and classifies objects, crucial for pick-and-
place tasks.  

In comparison to traditional methods like R-CNN 
and SSD, the YOLOv7-based system stands out for 
its speed and efficiency, making it suitable for real-
time applications. Unlike many industrial vision 
systems that rely on expensive, specialized hardware 
and cloud-based processing, our solution operates 
entirely on affordable, off-the-shelf hardware  
and runs locally. This not only reduces costs but also 
ensures data security and independence from prepaid 
cloud services. 

Future efforts will focus on real-world testing, 
automating data handling, optimizing training 
processes, enhancing user interfaces, and adapting the 
system to different object sets. These steps aim  
to refine the system’s performance and usability 
further. By continuing to improve the system’s 
capabilities and versatility, we aim to create an 
effective and accessible solution for a wide range of 
industrial applications. 

Additionally, the local operation of the system 
eliminates dependency on internet connectivity and 
cloud services, which can be a limitation  
in environments with unreliable connectivity  
or stringent data privacy requirements. This ensures 
that our system remains robust and functional  
in diverse settings. 

In summary, the developed object recognition 
system for the Spinbotics robotic arm not only meets 
the demands of real-time object detection but also 
provides a cost-effective, secure, and versatile 
solution. This positions it as a competitive alternative 
to more expensive industrial vision systems, paving 
the way for broader adoption in various industrial 
applications. 
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