
Science & Military 1/2022

29

DOI: https://doi.org/10.52651/sam.a.2022.1.29-36

THE HUMAN INTERFACE DEVICE (HID) ATTACK
ON ANDROID LOCK SCREEN NON-BIOMETRIC PROTECTIONS

AND ITS COMPUTATIONAL COMPLEXITY

Sebastián POTOCKÝ, Jozef ŠTULRAJTER

Abstract: Nowadays, information obtained from mobile phones is often the subject of evidence in front of a court. Forensic
analysts often come across smartphones about which they have no prior information. However, they need to extract data from
them. The main prerequisite to extract the data is to bypass Android lock screen protection. The HID attack is a promising
method to break Android lock screen protection. In many cases, this is the only way how to break the smartphone´s non-
biometric lock screen protections on newer Android OS versions. The article contains examples of three non-biometric types
of Android smartphone lock screen protections and their computational complexity. The paper describes hardware and software
requirements for implementation of HID attack.

Keywords: Android; HID; Attack; Bypass; Protection; PIN; Pattern; Password.

1 INTRODUCTION

It is not an impossible task to break into a locked
device and access the data. There are various ways
how their lock screens can be breached or bypassed.
Some of them are applicable for all Android devices,
or all possible situations. Generally, there are three
common techniques how to access data from Android
devices. They are manual, logical and physical data
acquisitions [1].

Manual acquisition utilizes the user interface to
investigate the contents of the phone´s memory and it
only acquires the data that appears on the mobile
phone. Manual extraction introduces a greater degree
of risk in the form of human error, and there is a
chance of deleting evidence [1].

Physical acquisitions like imaging an Android
phone, JTAG (join test action group), the chip-off
technique is a bit-by-bit copy of the physical storage.
From Android version 6.0 is encryption turned on by
default with full disk encryption or file based
encryption and not like a user option and therefore the
JTAG and chip-off techniques are almost useless.
Thus, this work will not deal with physical acquisition
of data due to the encryption mentioned [1].

Logical acquisition extracts logical storage
objects, such as files and directories that reside on a
filesystem. It contains ADB pull data extraction,
ADB dumpsys extraction, ADB backup extraction,
browsing SQL data. Data obtained by logical
extraction such as call history, SMS/MMS, photos,
videos, documents, calendars, GPS locations,
browser history information, social networking chats,
backup extraction, dumpsys extraction are usually
sufficient to clarify the case [1].

The main prerequisite for a successful logical
acquisition is to break the locked screen protection of
device. Device´s lock screen protection types are
divided into biometric and non-biometric ones and
can be bypassed with root privileges, but, in some
cases, also without them [1].

Rooting usually wipes the phone, so all your files
(non-system files) are unlinked, deleted [1].

A human interface device (HID) attack
is a simulation of human activity programmatically.
A HID attack vector is a combination of customized
hardware and restriction bypass via mouse
or keyboard emulation [2].

It is a scenario in which an attacker takes
a programmable embedded development platform
such as the Teensy, Arduino or in our case
smartphone and an associated software package to
create a USB device which, when plugged into
a smartphone, will execute a pre-configured set
of keystrokes to break the lock screen protection and
allow the logical acquisition [2].

There are two main advantages of the HID attack.
The locked phone does not need to be rooted. There
is no need to enable USB debugging. USB debugging
allows an Android device to communicate with
a computer that's running the Android SDK tools in
order to use advanced operations [1] [2].

Based on this, HID attack is a promising method
for obtaining data from Android devices.

This attack can be executed on the non-biometric
lock screen protections, such as pin, pattern
or password.

The goal of this paper is to explain the HID attacks
and describe their input structure and computational
complexity.

2 TYPES OF NON-BIOMETRIC LOCK

SCREEN PROTECTIONS AND THEIR
COMPUTATIONAL COMPLEXITY

Complexity is a measurement of how fast and

efficient an algorithm performs based on an input size
and situation in which the algorithm has to run [3].

Computational complexity is divided into two
types, memory complexity and time complexity [3].

Memory complexity measures how much
computer memory the algorithm would take. Memory

Science & Military 1/2022

30

requirement is irrelevant in HID attack, given the
huge resources modern computers possess [3].

Time complexity measures approximate number
of operations an algorithm takes when processing an
input of a certain size [3].

The vital pointer is time requirement which is
mostly affected with timeouts during the HID attack.
Timeout is a certain period of time that the user has
to wait before entering a new combination of pin,
pattern or password after too many incorrect attempts
have been entered [4].

Each manufacturer specifies different types of
timeouts for different types of their phones. There is
no way to bypass timeout without previous
exploiting. Even though, timeouts are a means of
protection against brute force attacks, but, in some
cases, it is still possible to execute a HID attack [4].

For instance, Samsung smartphones use timeouts
which are mentioned below [4]:

 After 1-5 wrong attempts – 1x 30 seconds
timeout.

 After 6-10 wrong attempts – 1x 30 seconds
timeout.

 Between 11-41 wrong attempts – 30 seconds
timeout after each wrong attempt.

 After 41 wrong attempts – 60 seconds timeout
after each wrong attempt.

2.1 Invalid attempt

Each attempt must meet some minimum
requirements. If the entered attempt to break the PIN,
pattern and password does not meet even the
minimum requirements, this attempt is not affected
by the timeout.

When a PIN, passcode or pattern consisting of
fewer than four characters are entered ("entered"
meaning followed by the "Enter" key), Android does
not consider that an actual unlock attempt. It will
show no message from the Android Lock Screen
saying "Failed Attempt", "Try Again," etc. Incorrect
Passcode event wouldn't trigger due to an incomplete
attempt. If the input is four digits or greater, Android
will display a message along the lines of "PIN
incorrect, please try again" or "Wrong PIN" [5].

Therefore, inputs smaller than 4 digits or
characters, will not be taken into account during
measures.

2.2 PIN

Rules:
 Software requirement of a PIN input in

android devices prerequisite minimum 4 digit
input, but no more than 16 digit input, which
consist of Arabic numerals.

A formula for computational complexity is
variation with repetition.

Vn
 k= n k (1)

The table below shows the time complexity
of breaking an Android screen protected by a PIN
of different lengths. Total time was calculated from
the number of attempts executed in the worst-
case and the timeouts of Samsung smartphones
between incorrect attempts which were mentioned
in section 2.

 Tab. 1 Time complexity (total attempts) of check all

PIN inputs calculated with the formula of
variation with repetition

 Source: author.

2.3 Pattern

A valid unlock pattern should follow
the following rules:

 A pattern should connect at least 4 dots.
 A dot can be connected only once, meaning

that
a pattern connects no more than 9 dots.

 A pattern will always connect the first
unconnected dot along its path. Then it may go
further to connect other unconnected dots.

 A pattern can go through a previously
connected dot along its path in order to connect
an unconnected dot [6].

At first glance, it might seem that the total number

of attempts is calculated using variation without
repetition formula. However, because of the
limitations mentioned above it is much less.

Vn
 k=

n!

(n - k)!
 (2)

For comparison, the table below shows
the computational complexity of the PATTERN, if it
were calculated according to the variation without
repetition formula.

Tab. 2 Time complexity (total attempts) of check all

PATTERN inputs calculated with the formula
of variation without repetition

n k Total attempts Total time
9 4 3024 2,083 days
9 5 15120 10,483 days
9 6 60480 41,983 days
9 7 181440 125,994 days
9 8 362880 251,983 days
9 9 362880 251,983 days

 Source: author.

n k Total attempts Total time
10 4 10 000 6,927 days
10 5 100 000 69,427 days
10 6 1 000 000 1,902 years
10 7 10 000 000 19,025 years
10 8 100 000 000 190,258 years
10 9 1 000 000 000 1902,587 years
10 10 10 000 000 000 19025,874 years

Science & Military 1/2022

31

Problem of all valid PATTERNs was solved by
generating all patterns that follow the rules described
above. [6], [7].

The table below shows the time complexity of
breaking an Android screen protected by the
PATTERN of all possible combinations in a 3 x 3
grid, which is default option in the most smartphones.
Total time was calculated from the number of
attempts executed in the worst-case and the timeouts
of Samsung smartphones between incorrect attempts
which were mentioned in section 2.

Tab. 3 Size statistics of all valid patterns

n k Total attempts Total time

9 4 1624 1,079 days

9 5 7152 4,949 days

9 6 26016 18,049 days

9 7 72912 50,616 days

9 8 140704 97,694 days

9 9 140704 97,694 days

Source: [6].

The table below proves, that real computation

complexity of PATTERN is on average 2,3x less than
expected.

Tab. 4 Comparing of real computation complexity with

variation without repetition

n k Variation without
repetition

Real
computation

Total

9 4 3024 1624 1,862x
less

9 5 15120 7152 2,114x
less

9 6 60480 26016 2,325x
less

9 7 181440 72912 2,488x
less

9 8 362880 140704 2,579x
less

9 9 362880 140704 2,579x
less

Source: author.

2.4 Password

Rules:
 Software requirement of a password input in

Android devices prerequisite minimum 4
character input, but no more than 16
character input, which consist of small letters,
capital letters with or without diacritics (it
depends on language), Arabic numerals and
special characters.

A formula for computational complexity
is variation with repetition (1).

The tables below show the time complexity
of breaking an Android screen protected by
a PASSWORD of four and five digits lengths.
PASSWORDs containing lowercase, uppercase, and
numbers are included in the comparison. Total time
was calculated from the number of attempts executed
in the worst-case and the timeouts of Samsung
smartphones between incorrect attempts which were
mentioned in section 2 [8].

Tab. 5 Four digits password

Small
letter

Capital
letter

Numbers n k Total
attempts

Total
time

YES NO NO 26 4 456 976 317
days

YES YES NO 52 4 7 311
616

13,910
years

YES YES YES 62 4 14 776
336

28,113
years

Source: author.

Longer PASSWORDs are irrelevant
for comparison due to their high computational
complexity already with a 5-character password,
a significant increase can be seen.

Tab. 6 Five digits password

Small
letter

Capital
letter

Numbers n k Total
attempts

Total
time

YES NO NO 26 5 11 881 376 22,605
years

YES YES NO 52 5 380 204
032

723,371
years

YES YES YES 62 5 916 132
832

1743,022
years

Source: author.

Special characters that would only increase the

computational complexity were not taken into
account in the comparison.

2.5 Overview of time complexity

Up to now, HID attack has been described as

a brute-force attack with timeouts. Looking at the
time complexity, it is clear that HID attack is not
effective in every case. It does not make sense to run
attack that can last several years in the worst case.
Every HID attack should finish within a reasonable
time.

Therefore, it is desirable to know the time
complexity of each case in the worst case.

The Table 6 below shows the time complexity of
non-biometric Android lock screen protections from
the weakest to the strongest.

Science & Military 1/2022

32

Tab. 7 Overview of type protections and their time
complexity

Type of protection Time complexity
in worst case

4 dots pattern 1,079 days
5 dots pattern 4,949 days
4 digits pin 6,927 days
6 dots pattern 18,049 days
7 dots pattern 50,616 days
5 digits pin 69,427 days
8 dots pattern 97,694 days
9 dots pattern 97,694 days
4 digits password from
small letters

317,327 days

6 digits pin 1,902 years
4 digits password from
small and capital letters

13,910 years

7 digits pin 19,025 years
5 digits pin from small
letters

22,605 years

4 digits password from
small, capital letters and
numbers

28,113 years

8 digits pin 190,258 years
5 digits password from
small and capital letter

723,371 years

5 digits password from
small, capital letters and
numbers

1743,022 years

9 digits pin 1902,587 years
10 digits pin 19025,874 years

Source: author.

It is obvious that the 5 dot long pattern is similar
in strength to a 4 digit PIN combination and a 7 dot
long pattern is similar in strength to a 5 digit PIN
combination. However, a 6 digit PIN is already more
secure than all the patterns combined together.

Breaking a 6 or more digit PIN with brute-force
 is irrelevant, because it will take a lot of time.

As it can see on table above, HID attack
of passwords is computationally intensive.

Otherwise, the time complexity can
be significantly decreased by entering password´s
inputs successive from the most to the least probable,
like in the dictionary attack. There is no other
effective option because random guessing of letters is
ineffective.

The difference with brute force attack is that,
in brute force, a large number of possible key
permutations are checked whereas, in the dictionary
attack, only the words with the most possibilities of
success are checked and therefore it is less time
consuming than the brute force one.

There are many articles that deal with the
probability of selected pins, passwords or patterns
according to human psychology [9], [10], [11].

Locked and attack devices have the ports
for charging their batteries occupied during the whole

HID attack. It is necessary to interrupt the attack
while recharging the batteries. This situation can
occur several times during an attack [4].

Therefore, the total time of breaking a lock screen
protection will be affected by charging time of the
locked or attack devices.

3 HARDWARE AND SOFTWARE

REQUIREMENTS

There are many tools that can perform a HID

attack like Rubber Ducky [12], Teensy [13],
Cellebrite [14], XPIN Clip [15], etc. However, these
solutions require special hardware and no
documentation is published, as they are commercial
paid tools.

First of all, we have to create a cracking device.
It means we need a rooted Android device with HID
kernel support. The most famous software is Kali
NetHunter. Kali NetHunter is a free and open-source
mobile penetration testing platform for Android
devices, based on Kali Linux. However, Kali
NetHunter is not necessity. The most important thing
is to prepare enabled HID endpoints and these are
then mirrored to our victim device.

The basic HID handling is done in the kernel, and
HID reports can be sent/received through I/O on the
/dev/hidgX devices (keyboard, mouse, joystick). For
our purposes it is /dev/hidg0 for keyboard and
/dev/hidg1 for mouse [16].

To use these devices properly, formatted input has
to be sent to them.

3.1 USB keyboard keypress mechanism

Report format must be created according to

certain rules and must be of a certain length.
The USB keyboard report may be up to 8 bytes in

size, although not all these bytes are used, it's possible
to implement a proper implementation using only the
first three or four bytes [17].

Tab. 8 B.1 Protocol 1 (Keyboard)

Byte Description
0 Modifier keys
1 Reserved field (unused/reserved for

OEM)
2 Keypress 1
3 Keypress 2
4 Keypress 3
5 Keypress 4
6 Keypress 5
7 Keypress 6

Source: [18].

Not every character on the keyboard corresponds

to a single keystroke. To write uppercase letters,
special characters and diacritics is necessary to use
modifier keys.

Science & Military 1/2022

33

Modifier keys in HID report is a bitfield, where
each bit corresponds to a specific modifier key. When
a bit is set to 1, the corresponding modifier key is
being pressed [18].

Tab. 9 The bit structure of modifier keys byte

Bit Bit
Length

Description

0 1 Left Ctrl
1 1 Left Shift
2 1 Left Alt
3 1 Left GUI (Win/Super key)
4 1 Right Ctrl
5 1 Right Shift
6 1 Right Alt
7 1 Right GUI(Win/Super key)

Source: [17].

Reserved field in report format is unused

or reserved for OEM (original equipment
manufacturer). This byte is reserved by the USB HID
specification, and thus software should ignore it [17].

Keyboard report can indicate up to 6 keypresses.
All these values are unsigned 8-bit values [17].

The exact description of keypresses is in the
specification of HID Usage Tables for Universal
Serial Bus version 1.22 expressed by Usage ID.

Usage IDs are part of the HID Report descriptor
and supply an application developer with information
about what a control is actually measuring or
reporting. During HID attack Usage ID determines
key codes to be used in implementing a USB
keyboard [19].

For instance, sending a Capital H in normal
keyboard requires press Right shift and small h. Right
shift keystroke requires the fifth bit set to 1. Binary
number 00100000 is converted to hexadecimal
number 20. Usage ID of keystroke of small h letter is
0B. These values are pasted into the correct location
in the keyboard report. The report can be sent to
/dev/hidg0 device using long version or short version
of the report.

Long version of the report:

\0x20\0x00\0x0B\0x00\0x00\0x00\0x00\0x00

Short version the report:
\x20\0\x0B\0\0\0\0\0

3.2 USB mouse X, Y movement

During creating a USB HID report is important
to take account that graphical pattern is not a set
of random numbers or characters like at PINs
or PASSWORDs.

The structure of the PATTERN can be imagined
as a set of consecutive lines that are connect
at a common point.

Fig. 1 Example of pattern
 Source: [20].

Each line can be drawn using a Cartesian

coordinate system with X and Y coordinates.
Therefore, each line will be the separate input in

the proper format.

Fig. 2 Cartesian coordinate system

Source: [21].

USB mouse, just like any other HID device,
communicate with the software using reports, which
are sent via endpoints. Only the first three bytes of the
USB mouse report are defined. The remaining bytes,
if exist, may be used for device-specific features [17].

Tab. 10 B.2 Protocol 2 (Mouse)

Byte Bits Descriptions
0 0 Button 1
 1 Button 2
 2 Button 3
 4 to 7 Device-specific
1 0 to 7 X displacement
2 0 to 7 Y displacement
3 to n 0 to 7 Device specific (optional)

Source: [18].

When pattern is drawing to smartphone screen,
finger is in contact with the screen all the time.
It is equivalent to create a line in computer screen
when the left button of the computer´s mouse
be pressed during a mouse movement. In the USB
mouse report is button status set in the first byte. This
byte is a bitfield, in which the lowest three bits are
standard format. The remaining 5 bits may be used
for device-specific purposes [17].

Science & Military 1/2022

34

 Tab. 11 The bit structure of button status

Bit Bit
Length

Description

0 1 When set to 1, indicates the
left mouse button is being
clicked.

1 1 When set to 1, indicates the
right mouse button is being
clicked.

2 1 When set to 1, indicates the
middle mouse button is being
clicked.

3 5 These bits are reserved for
device-specific features.

 Source: [17].

The HID attack on PATTERN requires a left
mouse button to be pressed during each attempt. The
direction and length of the line are determined by X
and Y movements.

X movement is a 8-bit signed integer (0x00) that
represents the X movement. When this value is
negative, the mouse is being moved to the left. When
this value is positive, the mouse is being moved to the
right [17].

Y movement is a 8-bit signed integer (0x00) that
represents the Y movement. When this value become
negative, the mouse was moved up. When the value
is positive, the mouse is being moved down [17].

In decimal notation, the convention is to precede
the number with „+“ or „-“ to indicate whether it´s
positive or negative, usually omitting the „+“ to
simplify the notation for positive numbers. In binary
this problem is solved by signed magnitude [22].

For instance, sending a mouse movement 300
pixels right and holding left mouse button at the same
time requires proper formatted input below.
The report can be sent to /dev/hidg1 device using long
version or short version of the report.

Long version of the report:
\0x01\0xFED4\0x00\0x00

Short version of the report:
\x01\0\xFED4\0\0

4 HID ATTACK IMPLEMETATION

Android-PIN-Bruteforce is an open source
solution developed by Adam Horton. The solution
uses a USB OTG cable to connect the locked phone
to the Nethunter device. It emulates a keyboard,
automatically tries PINs and waits after trying too
many wrong guesses. The USB HID Gadget driver
provides emulation of USB Human Interface
Devices. This enables an Android Nethunter device
to emulate keyboard input to the locked phone, like
plugging a keyboard into the locked phone and
pressing keys [4].

Fig. 3 Involvement of HID attack
Source: [4].

Required components: [4]

 A locked Android
 A Nethunter phone (or any rooted Android

with HID kernel support)
 USB OTG (On the Go) cable/adapter (USB

male Micro-B/C to female USB A), and a
standard charging cable (USB male Micro-
B/C to male A).

Advantages: [4]

 No need to enable USB debugging
 The locked phone does not need to be rooted
 Special hardware is not required
 Backoff time to crack other types of devices is

configurable
 Detects when the phone is powered off (Low

Power warning pop-ups)
 Detects when the phone is unplugged and

waits while retrying every 5 seconds
 Optimised PIN list sorted by probability
 Log file

Disadvantages: [4]

 Only for Android
 Only for PINS
 No log of the correct guessed PIN

Android-PIN-Bruteforce was executed on 10
devices of different version of Android. In the
measurement, only the executability on device was
examined not total time of execution. The first point
of measurement was whether Android-PIN-
Bruteforce could repeat the attack with another PIN
according to the configuration after an incorrect
attempt on measured device. The second point
measured whether the device was properly unlocked
after sending the correct PIN. The table below shows
that the Android-PIN-Bruteforce could not be
launched only on devices with a version of Android
lower than 5.0.

Science & Military 1/2022

35

No. Smartphone/tablet type Android
version

USB type Executable

1 Smartphone Samsung galaxy S4 mini 4.4.2 USB B NO
2 Tablet Lenovo Yoga 2-10 50F 5.0.1 USB B YES
3 Tablet Huawei MediaPad T5 8.0.0 USB B YES
4 Tablet Lenovo Touchpad 2016 8.1.0 USB B YES
5 Smartphone Samsung galaxy J7 9 USB B YES
6 Xiaomi Mi A2 Light 10 USB B YES
7 Samsung galaxy A10 10 USB C YES
8 Samsung galaxy S10x 11 USB C YES
9 Samsung galaxy A71 11 USB C YES

10 Samsung galaxy S10x 12 USB C YES

Tab. 12 Measurements of HID attack.
Source: author.

5 CONCLUSION

This work presents an overview of time

complexity of all types of Android lock screen
protections.

PATTERN is vulnerable to HID attack due to its
low computational complexity.

In this paper it has been presented that PIN and
PASSWORD time complexity grow exponentially.

The HID attack is effective only for 4 and 5 digit
PINs.

For PASSWORD it is beneficial to create a table
of the most commonly used passwords, like in the
dictionary attack.

The paper also describes creation of proper
formatted inputs, which an attacker has to send to the
locked device.

The attack is executable on the vast majority of
devices with a higher version of the operating system
of Android.

Further work might be focused on creating a
cracking device and executable scripts, which can
bypass not only PIN, but also PASSWORD and
PATTERN protections

We can study:
 Using other methods of generating inputs. For

example, using the Linux USB HID gadget
driver.

 Testing them on different types of smartphones
or tablets with different timeouts from different
manufacturers.

 Determine that a HID attack has been
performed on a device using forensic analysis.

 Design of a method to protect your phone from
HID attacks.

References

[1] TAMMA, H., H. SKULKIN, H. MAHALIK

and S. BOMMISETY. Practical Mobile
Forensics Fourth Edition. Birmingham: Packt

Publishing, 2020. s. 604. ISBN 978-1-83864-
752-0.

[2] SYED MUQARRAB-UL-AHAD ZAIDI.
What are HID Attacks? How to perform HID
Attacks using Kali NetHunter? [online].
Pakistan: U.S. University of Agriculture, 2018.
Available at:

 https://www.researchgate.net/publication/3231
11273_What_are_HID_Attacks_How_to_perf
orm_HID_Attacks_using_Kali_NetHunter

[3] Demystifying the Big O Notation. [online].
[accesed 27. October 2021]. Available at:
https://www.digitalonus.com/demystifying-
the-big-o-notation/

[4] Android PIN Bruteforce. [online]. [cit. 30.
August 2021]. Available at:
https://github.com/urbanadventurer/Android-
PIN-Bruteforce

[5] Incorrect Passcode and the Android pattern
lock. [online]. [cit. 17. September 2021].
Available at:
https://personal.support.lookout.com/hc/en-
us/articles/202929734-Incorrect-Passcode-and-
the-Android-pattern-lock

[6] SUN, Ch., Y. WANG and J. ZHENG.
Dissecting pattern unlock: The effect of pattern
strength meter on pattern selection. [online]. In
Journal of Information Security and
Applications, 2014, 19. 4-5: 308-320.
Available at:
https://doi.org/10.1016/j.jisa.2014.10.009

[7] Aviv AJ, Gibson K, Mossop E, Blaze M,
Smith JM. Smudge attacks on smartphone
touch screens. In: Proceedings of the 4th
USENIX conference on Offensive
technologies, WOOT'10. Berkeley, CA, USA:
USENIX Association; 2010. Available at:
https://dl.acm.org/doi/10.5555/1925004.19250
09

[8] Letters in the alpha bet. [online]. [cit. 10.
September 2021]. Available at:

Science & Military 1/2022

36

https://www.worldometers.info/languages/how
-many-letters-alphabet/

[9] LØGE, M. D. Tell Me Who You Are and I Will
Tell You Your Unlock Pattern. [online]. U.S.
Master's Thesis. Norwegian University of
Science and Technology, Department of
Computer and Information Science July, 2015.
Available at:
https://core.ac.uk/download/pdf/154670387.pdf

[10] PIN analysis. [online]. [cit. 30. September
2021]. Available at:
https://datagenetics.com/blog/september32012/
index.html

[11] MARKERT, P. et al. This pin can be easily
guessed: Analyzing the security of smartphone
unlock pins. In 2020 IEEE Symposium on
Security and Privacy (SP). IEEE, 2020. p. 286-
303. Available at:
https://doi.org/10.1109/SP40000.2020.00100

[12] USB rubber ducky. [online]. [cit. 17. December
2021]. Available at: http://www.sigint.sk/e-
shop/758/5/radio-prijimace-vysielace/rubber-
ducky-detail

[13] Teensy® USB Development Board. [online].
[cit. 17. December 2021]. Available at:
https://www.pjrc.com/teensy/

[14] Cellebrite. [online]. [cit. 17. December 2021].
Available at: https://cellebrite.com/

[15] XPin Clip. [online]. [cit. 17. December 2021].
Available at: https://xpinclip.com/

[16] Linux USB HID gadget driver. [online]. [cit.
 8. October 2021]. Available at:
https://xpinclip.com/https://www.kernel.org/do
c/html/latest/usb/gadget_hid.html>

[17] USB Human Interface Devices. [online]. [cit.
 15. September 2021]. Available at:
https://wiki.osdev.org/USB_Human_Interface_
Devices

[18] USB IMPLEMENTS’ FORUM. Device Class
Definition for Human Interface Devices (HID)
Firmware Specification - 6/27/01 Version 1.11,
1996-2001. 97 s.

[19] HID Usage Tables for Universal Serial Bus
version 1.22. [online]. [cit. 5. September
2021]. Available at:
https://www.usb.org/sites/default/files/hut1_22
.pdf

[20] Hacking Android Pattern Lock (ALP). [online].
[cit. 12. November 2021]. Available at:
https://www.hackcave.net/2015/08/hacking-
android-pattern-lock.html

[21] Cartesian coordinate system. [online]. [cit. 16.
November 2021]. Available at:
https://en.wikipedia.org/wiki/Cartesian_coordi
nate_system

[22] Two's complement. [online]. [cit. 2. September
2021]. Available at: https://en.wikipedia.
org/wiki/Two%27s_complement

Lt. Dipl. Eng. Sebastián POTOCKÝ (PhD. student)
Armed Forces Academy of General M. R. Štefánik
Department of Computer Science
Demänová 393
031 01 Liptovský Mikuláš
Slovak Republic
E-mail: sebastian.potocky@gmail.com

Prof. Dipl. Eng. Jozef ŠTULRAJTER, CSc.
Armed Forces Academy of General M. R. Štefánik
Department of Computer Science
Demänová 393
031 01 Liptovský Mikuláš
Slovak Republic
E-mail: jozef.stulrajter@aos.sk

Sebastián Potocký was born in Slovakia in 1994. He
received his engineering degree from the Armed
Forces Academy of General M. R. in the field of
Military Communication and Information Systems.
He is currently a web applications group commander
- the base of stationary communication and
information systems. His research is focuses on
development of application, reverse engineering,
cyber security.

Jozef Štulrajter works as a professor at the
Department of Informatics, Armed Forces Academy
of General M. R. Štefánik in Liptovský Mikuláš. He
graduated (Ing.) at the Military Technical College in
1974. He obtained the degree of CSc. diploma in
Theoretical Electrical Engineering - Theory of
Circuits and Systems of the Military Academy
in Liptovský Mikuláš in 1992. His research interests
include Information and Communication Technology
(ICTs), computer architectures, image coding,
computer security.

