
Science & Military 1/2022

14

DOI: https://doi.org/10.52651/sam.a.2022.1.14-22

EVASION OF ANTIVIRUS WITH THE HELP OF PACKERS

Andrej FEDÁK, Jozef ŠTULRAJTER

Abstract: Nowadays, almost every malware file comes obfuscated and prepacked preferably with an unknown algorithm.
Antivirus programs are taught to deal with these kinds of obstacles with the help of signature databases and heuristic engines.
AV systems and their tools are professionally and carefully developed by experts; however, they are not flawless either. They
tend to react to any threats that are identified by already-known malicious patterns and bad behaviours. Therefore, malware has
to evolve and use new methods to pass these defences. In this paper, the internal components of AV programs and well-known
packing techniques are briefly explained while in addition they are tested against each other. This work provides an initial
insight into the complex subject of antivirus protection.

Keywords: Antivirus detection; Malware evasion; Scanner; Signature; Heuristic engine; Packer; Obfuscation; Compressor;
Crypter; Protector; Portable executable.

1 INTRODUCTION

First things first, in order to evade antivirus
protection, researchers or attackers must know how
an antivirus product works. Therefore, the aim of
this work is to describe the basic components that
create the whole structure of the AV program.
Individual AV components are introduced together
with their internal processes that help in the
detection and removal of malicious files. As the
attack patterns become more sophisticated, antivirus
engines have to adapt and improve their capabilities
to identify new potential threats. Malware authors
always try to be one step ahead of the competition
and develop new methods to mask their activities
and hide any traces of their malicious code. One of
the many obfuscation techniques is the use of packer
programs that are capable to create a new protection
layer around the bad executable file. Dozens, nay
hundreds of unique packer programs are in
circulation and many more to come. In this paper,
the effectiveness of the well-known packers is tested
as well as some of their shielding features are
explained.

2 DEFINITION OF ANTIVIRUS SOFTWARE

Antivirus software is special security software
created for the purpose to protect your computer and
prevent computer infections by detecting malware. In
the vast majority of cases, it is used as a preventive
measure. Even such specified software solutions are
not perfect and in the case of an uncaught intrusion
and infection, they are furthermore designed to
completely remove the malicious software and
disinfect the computer [1].

Nowadays, several security features come usually
built-in within the operating systems such as
Windows (Defender) or Mac OS X (XProtect). There
is still a vast number of companies (for example
Bitdefender, Norton, Kaspersky, Avast, ESET, and
many others) that solely focus all of their resources to
create special security software that aims to give

better protection than that offered by the operating
system.

The main feature of AV software is to find known
malicious behaviours and patterns in programs,
documents, web pages, or network packets. The
detection capabilities of AV products are primarily
based on experience with previously known malware
patterns. Simply, an AV software is not able to
identify new unknown threats unless they are based
on old known behavioural or static patterns [1].

3 STRUCTURE OF ANTIVIRUS SOFTWARE

The main part of an AV system is called the core
or the kernel, which coordinates tasks between all the
other components such as the scanning engine
(command-line scanner, GUI scanner), daemons or
system services, file system filter drivers, network
filter drivers, plugins, kernel AV components
(signature database, decompressors, emulators,
supported file formats). The AV product suite may
also include other additional support utilities like
browsers, browser toolbars, drivers for self-
protection, firewalls, and so on. As you can see, the
product is the whole software package the AV
company ships to the customer [1].

3.1 Kernel

A kernel forms the core of an AV product. All the
routines for unpacking executable programs,
compressors, crypters, protectors, and so on are in the
kernel’s libraries. Hence the kernel must support all
the code for opening a very long list of file formats in
order to iterate through all the streams in a file,
analyse them, and catch malicious exploits embedded
in the files. Some file formats (excluding compressors
and archives) that need to be supported are OLE2
containers (Word or Excel documents); HTML pages,
XML documents, and PDF files; CHM help files; PE,
ELF, and MachO executables; JPG, PNG, GIF,
and TIFF image file formats; ICO and CUR icon
formats; MP3, MP4, AVI, and MOV video and audio

Science & Military 1/2022

15

file formats; and so on. Furthermore, the kernel is
frequently used by the scanner engine, by the AV
resident (or daemon), or by other programs and
libraries. Developing an AV kernel is very complex
because enormous time and effort are required to
support mentioned features [1].

3.2 Scanners

Another common feature of AV products is the
scanner, which may be a GUI or command-line on-
demand scanner. Such tools are used to scan
whenever the user decides to check a set of files,
directories, or the system’s memory. There are also
on-access scanners, more typically called residents or
real-time scanners. The resident analyses files that are
accessed, created, modified, or executed by the
operating system or other programs (like web
browsers). It does this to prevent the infection of
document and program files or to prevent known
malware files from executing. However, the resident
is one of the most interesting components to attack.
For example, a security bug in the parser of Microsoft
Word documents can expose the resident to the
execution of a malicious code after a Word document
is downloaded (even if the user doesn’t open the file).
Or a similar approach can be applied to the AV’s
parser code handling new email messages and their
attachments. These bugs can be used to perform a
denial-of-service attack on an AV program, which
makes it crash or loop forever, thus disarming the
antivirus temporarily or permanently [1].

3.3 Signatures

The scanner of any AV product searches files or
packets using a set of signatures to determine if the
files are malicious. The signatures are the known
patterns of malicious files. Some typical signatures
are based on the simplest pattern-matching
techniques (searching for a specific string, or byte-
stream), Cyclic Redundancy Check algorithms (error-
detection code that calculates output hash in form of
CRC checksums), or MD5 and SHA1 hashes. Relying
on cryptographic hashes, like MD5, works only for a
specific file (as a cryptographic hash tries to identify
just that one whole file), while other fuzzy logic-
based signatures, as CRC algorithm applied on
specific parts of data, can identify various bad files.
AV products usually have different types of
signatures which range from simple CRCs to rather
complex heuristics patterns based on many PE header
properties, the complexity of the code at the entry
point of the executable file, the entropy of a section
or the whole executable file, and so on [1].

Each kind of signature has advantages and
disadvantages. For example, some signatures are very
specific and less likely to be prone to a false positive
(when a healthy file is flagged as malware) –
cryptographic hashes, while others are very risky and

can generate a large list of false positives – CRCs. For
example, imagine a signature that finds the word
“Microsoft” anywhere in a file. This would cause a
large list of false positives, regardless of whether it
was discovered in malware. Stricter pattern
description avoids any false positive detections [1].

3.4 Decompressors and unpackers

Another key part of every AV kernel is the
support for compressed or archived file formats like
ZIP, TGZ, 7z, RAR, XAR, and so on. AVs must be
able to decompress and navigate through all the files
inside any compressed or archived file, as well as
compressed streams in PDF files and other file
formats. Because AV kernels must support so many
different file formats, vulnerabilities are often found
in the code that deals with this variety of input [1].

An unpacker is a routine or set of routines
developed for unpacking protected or compressed
executable files. Malware in the form of executables
is commonly packed using freely available
compressors and protectors or proprietary packers.
Some packer tools, like UPX (Ultimate Packer for
Executables), just apply simple compression, and
unpacking such samples is an easy and
straightforward matter. On the other hand, more
complex software packers and protectors may in
addition transform the code into bytecode and run it
with its own virtual machine. Some packers can be
unpacked using the CPU emulator of the AV, another
by static means, and the rest, more complex ones,
using both techniques. The emulator is used up to
some specific layer and then a static routine executes
when some specific values are known such as the size
of the encrypted data, the algorithm used, the key, and
so on [1].

As with compressors and archives, unpackers are
a very common area to explore when you are looking
for vulnerabilities in AV software. The list of packers
to be supported is immense, even larger than the
number of compressors and archives, and it is still
growing. Some of them are used only during a
specific malware campaign, so there is ever-growing
emergence of new packers hiding the logic of new
malware [1].

3.5 Emulators

Most AV cores on the market offer support for
a number of emulators such as the most common Intel
x86 emulator, AMD64, or ARM emulators.
Emulators are not limited to regular CPUs. There are
also emulators for some virtual machines that are
aimed at inspecting Java bytecode, Android DEX
bytecode, JavaScript, and even VBScript or Adobe
ActionScript. Usually, files that trigger the emulators
are EXE crypters or packers that are too complex
to decrypt statically, so the antivirus engineers
decided to decrypt them using the emulator.

Science & Military 1/2022

16

Nowadays, fingerprinting or bypassing emulators and
VMs used in AV products is very common and quite
an easy procedure. It is almost impossible that the
developers of the AV emulators would implement all
of the instructions supported by to-be-emulated real
CPUs. For executable ELF or PE files, it is even less
likely that the developers would implement the whole
operating system environment. Therefore, it is really
easy to discover many different ways to fool
emulators and to fingerprint them [1].

3.6 Heuristics engines

Another common component in antivirus
software that detects malicious code is the heuristic
engine. The AV heuristic engines make decisions
based on general evidence instead of universal
detections or typical signature-based methods. They
rely on detection procedures that assess evidence and
behaviour as collected from analysing the code
statically or dynamically. On the other hand, they do
not rely on specific signatures to try to catch a certain
family of malware or malware that shares similar
properties. Heuristic engines implement a set of
algorithms that emulate the decision-making strategy
of a human analyst [1].

There are three different types of heuristic engines
namely static, dynamic, and hybrid, which uses both
strategies. Most often, static heuristic engines are
considered true heuristic engines, while dynamic
heuristic engines are called Host Intrusion Prevention
Systems (HIPS). Static heuristic engines try to
discover malicious software by finding evidence
statically by disassembling or carefully analysing the
file headers. Dynamic heuristic engines try to assess
the file or program based on its behaviour by hooking
(intercepting) API calls or executing the program in
an emulated environment. Learning about various
heuristic engines can get some insights into how
attackers are evading AV detection [1].

3.7 Static heuristic engine

Static heuristic engines are implemented in many
different ways depending on the deployment target.
For example, it is common to use heuristic engines
that are based on machine learning algorithms (such
as Bayesian networks, genetic algorithms, or expert
systems) to reveal information about similarities
between families by focusing on the biggest malware
clusters created by the heuristic engines. Those
heuristic engines are deployed and acceptable only in
malware research labs because they can cause a large
number of false positives and consume a lot of
resources. For desktop antivirus products, a much
better choice is an expert system that implements a set
of algorithms simulating the decision-making process
of a human analyst [1].

A human malware analyst can determine that an
executable file appears malicious, without actually

observing its behaviour, by briefly analysing the file
structure and taking a quick look at its disassembled
code. The analyst would evaluate several indicators
as a whole before labeling the file as a malicious one.
Some of the suspicious features could be an
uncommon file structure, uncommon characteristics
in a PE header, the obfuscated code, compressed or
somehow protected program, file packed multiple
times, corrupted file, any anti-debugging tricks,
change in the icon of the PE file to the different one
(used for image files, documents, etc.), dual extension
(common in malware that disguises an executable file
as a video, picture, document, ZIP file, or other
types), and so on. If some of the mentioned features
are true, a human analyst would suspect that the file
is malicious or at least that it is trying to hide its logic
and needs to be closely analysed. He would also
compare that sample with some sort of list of known
false positives. Such human-like behaviour, when
implemented in a heuristic engine, is called an expert
system [1].

3.8 Dynamic heuristic engine

Another analytical technique is known as
dynamic heuristics. When researchers want to analyse
a suspicious code without endangering running
systems, they contain the sample in a controlled
environment (like a secure lab) and perform a variety
of tests. Like this, it isolates the program or piece of
code inside a specialized virtual machine or sandbox
and gives the AV program a chance to test the code
and simulate what would happen if the suspicious file
was allowed to run. It examines each command that’s
executed and looks for any suspicious behaviours,
such as self-replication, overwriting files and registry
entries, and other actions that are common to malware
[2].

Dynamic heuristic engines base their detections
on the behaviour of the file or program by hooking
API calls or executing the program under an
emulation framework. The former approach is more
reliable because it involves actually looking at the
true runtime behaviour, while the latter is more error-
prone because it largely depends on the quality of the
CPU emulator engine and the quality of the emulated
operating system APIs. It is quite an easy task to
bypass heuristic engines based on emulators and
virtual execution environments. Malware may
execute a code that is not fully supported by the
emulators to fingerprint the AV software and change
its own behaviour accordingly with the intention of
avoiding detection. Bypassing heuristic engines
based on hooks, like the typical Host Intrusion
Prevention Systems (HIPS), is not complex either and
depends on which layer the API hooks are installed
(userland or kernel-land hooks) in order to monitor
the behaviour of a program [1].

Userland hooks work by detouring or intercepting
some APIs to monitor and control the execution of

Science & Military 1/2022

17

those APIs. To bypass userland hooks, attackers
could read the original prologue of the hooked
functions from the disk, execute those bytes, and
afterward continue executing the not-hooked part of
the function past the prologue bytes. Another simple
approach is to unload the hooking library, which will
subsequently remove the respective hooks. Kernel-
land hooks rely on registering call-backs that monitor
the creation of processes and access to the system
registry and monitoring real-time file activity.
Similarly, kernel-land hooks might be bypassed and
uninstalled by malicious code running in the kernel
[1].

4 MALWARE DETECTION WITH

VIRUSTOTAL

VirusTotal is an online service that allows you to
upload a file, which will be subsequently inspected
with over 70 antivirus scanners. It can be useful in
detecting malicious content and also in identifying
false positives (harmless items detected as malicious
by one or more scanners). Upon submitting a file,
scanning reports are shared with the submitter, and
also the public VirusTotal community. As a result, the
contributors are raising the global IT security level
and helping cybersecurity professionals and security
product developers discover harmful files samples for
further study, analyse emerging cyber threats, and
create new defences [3].

VirusTotal's aggregated data is the output of many
different antivirus heuristic engines, known-bad
signatures, website scanners, metadata extraction, file
and URL analysis tools, many user contributions, etc.
Since the end of 2017, it is also integrating a malware
analysis system in order to contribute behavioural
analysis reports. Thus, its tools are able to
comprehensively analyse samples from both static

information and dynamic behaviours, trigger and
capture behaviours of the samples in the sandbox, and
output the results in various formats [3],[4].

Sometimes, the main advantage of using
VirusTotal could be also its drawback since all the
uploaded files automatically become public. This is
not productive if you are researching AV evasion
techniques or when doing penetration testing. In the
first case, malware creators are also searching
through public databases to find out if their malware
has already been discovered. If so, they could alter the
behaviour of malicious samples or stop using some of
its services to hide any tracks. In the second situation,
using VirusTotal can be a bad idea if you want to keep
your testing payloads private to ensure they evade
antivirus products for a longer period of time.
Therefore, you need to use a private VirusTotal-like
tool and this is where your own offline MultiAV
solutions come into play [1].

The actual usefulness of virus scanners to
discover new threats is being disputed, but they are
able to detect well-known threats quite well. In this
work, we are mainly interested in the changes in the
detection results after applying wrappers on the
malicious files. Hence the output provided by
VirusTotal is more than sufficient.

5 MALWARE EVASION WITH PACKERS

AV software uses various techniques to identify
malicious software, which often self-protects.
Today’s malware may use many obscure techniques
in order to persist by staying hidden during infection
and operation and to prevent detection, analysis, and
removal. Malware achieves this by adding code that
is not strictly malicious but only intended to hide the
malicious code in an operating system (see the
visualization in Figure 1).

Fig. 1 Life cycle of packed PE (portable executable) file
Source: authors.

Science & Military 1/2022

18

According to the used layer of protection,
the obfuscation techniques can be divided into three
main categories: packers, crypters, and protectors.
Definitions for these categories are not carved in

stone, differences between them are sometimes
blurred, they all have overlap and there are exceptions
to the rules [1], [5], [6].

Fig. 2 Trivial examples of encryption techniques
Source: authors.

5.1 Compressors, original packers

In a lot of cases, the entire malware program is
obfuscated using what’s known as a packer program
(for example UPX, PESpin, MPRESS, ASPack, even
WinRAR, and dozens of others). Simply, a runtime
packer compresses the original malware file, thus
making all the original code and data unreadable. This
software prevents anybody from directly viewing the
malware’s code until it decompresses itself at runtime
in the memory where the “packed file” is executed
thus revealing the program’s original code.
Sometimes this technique is also known as “self-
extracting archives” or “executable compression” [5],
[6].

In the past, this type of compression has been used
for legitimate purposes, some of which include
protecting against piracy and making executable files
smaller because of the then size of portable media and
internet speeds. Nowadays, this application became
unnecessary, so when you see some packers being
used, it is almost always for malicious purposes. They
help conceal vital program components to prevent
less-experienced reverse engineers from unpacking
the malware’s contents. The creation of new custom
packers defeats modern unpacking scripts and forces
reversers to manually unpack the file. Sometimes
malware authors will pack their files two times, with
a commercial packer and then with their own custom
solution [5], [6].

Fortunately, there are many programs available
that identify commercial packers, and also advise on

how to unpack these files. Some of the file scanners
are for example Exeinfo PE, PEID, Detect-It-Easy, or
any signature-based database checker [6].

5.2 Crypters

The crudest technique utilized by malware authors
to hide malware’s internals is called obfuscation
which can be commonly seen in scripts. Obfuscation
is a technique that at first sight makes binary and
textual data (for example malicious URLs or registry
keys) unreadable and hard to understand. Its
implementation can be as simple as a few bit
manipulations and advanced as cryptographic
standards (i.e. DES, AES, etc). Thus, a more complex
method is actual encryption. A crypter is a type of
software that can encrypt, obfuscate, and manipulate
malware, to make the hidden executable as hard to
detect by security programs as possible [5], [6].

Perhaps the simplest technique is ROT which is
an ASM instruction for “rotate”, hence, for example
ROT13 would mean “rotate 13”. ROT13 uses simple
letter substitution to achieve obfuscated output. The
XOR operation is probably the most common method
of obfuscation. With the simple XOR cipher, a string
of text can be encrypted by applying the bitwise XOR
operator to every character using a given key. Even
without the XOR key, decryption programs are able
to cycle through every possible single-byte XOR
value in search of a particular string (i.e. “MZ” or
“PE”). To make the obfuscation more bulletproof,
malware authors might implement a two-cycle

Science & Military 1/2022

19

approach (performing two XOR encryptions with
different values) or increment the XOR, ROT value
in a loop. Furthermore, Base64 encoding has been
used for a long time to transfer binary data (machine
code) over a system that only handles text. Its
encoding alphabet is commonly used in malware to
disguise text strings. Because Base64 encoding is
typically easy to identify by its padding character
(equal sign “=”) and then overcome, malware authors
may adjust the order of the alphabet, which breaks
standard Base64 decoders. The basic principles of
aforementioned cryptographic techniques are
illustrated in the Figure 2 [6].

5.3 Protectors

A protector (for example Enigma, Themida,
VMProtect, and so on) is software created to keep an
attacker from directly inspecting or modifying a
compiled application to change its behaviour. It could
be described as a shield that keeps an application
encrypted and protected against reverse engineering
(refer to Figure 3). The obfuscation techniques used
by the protectors usually include the best of both
packing and encrypting (hybrid). That combination
together with some added features builds several

protective layers around the payload that a researcher
has to face. For example, when a protected
application is going to be run, the software protector
will first check for possible cracking tools
(dissemblers or de-compilers) that may be running on
the operating system. If everything is safe the
software protector will then proceed to decrypt the
protected application and allow it to be executed [5],
[7].

Another approach of protectors is code
virtualization, which uses a customized and different
virtual instruction set every time you use it to protect
your application. Such professional protectors are
used in the gaming industry against piracy, yet this
technique has also made its way into malware, more
specifically ransomware. The protection is so
efficient that there is no need for the encryption key
to be obtained from the command-and-control server,
but it can be hardcoded right into the ransomware.
Unpacking samples protected by a virtualization
packer could be highly time-consuming and
sometimes even impossible for researchers to restore
the sample into its original code. Detection of these
packed samples is extremely difficult with traditional
AV unpacking technology [5].

Fig. 3 Philosophy of common software protectors
Source: [7].

The main advantage of using a software protector
is to protect an application (in our case, malware)
against piracy and reverse engineering, however, that
doesn’t mean the protected application is
unbreakable. That’s because software protection is
very different from data protection. Even if a software
protector encrypts the protected application with the
most robust cryptographic algorithm (like RSA,
Elliptic curves, and AES), sooner or later the
protected application needs to be decrypted part by
part in order to be run by the CPU. It is in this phase
that most attackers will start their work by dumping
the decrypted application from memory to disk thus
not having to deal with the cryptographic algorithm
and reconstruction of the original application [7].

6 THE EFFECTIVENESS OF COMMON

PACKERS

Using obfuscation of any kind can be beneficial
for the reuse and recycling of old malware solutions.
In this exercise, we will be presented with the results
of how effective the usage of common packers in

evading AV detection can be. Static evasion
techniques are achieved by modifying the contents of
the input file, with the help of packer programs, so its
hash or checksum is changed and can no longer be
detected using signature-based detections. Packed
malicious executable files, preferably well-known
ones, will face dozens of scanning engines provided
by VirusTotal online service. The work of signature
checkers and their databases together with static
heuristic engines will be adequately tested. However,
in real-life situations, there is a high chance that the
packed malware will be discovered by the dynamic
heuristic engines, therefore it would need more anti-
AV modifications. In the conducted small-scale
exercise (see Figure 4), it is noticeable that packers
have an impact on the AV detection rates (for
example 60/69 means how many AV engines found
the file malicious out of the whole AV software pool).
In this case, statistical deviation could be quite large,
since rather a smaller pool of samples was part of the
experiment, but it is adequate for illustrative
demonstration. Still, the differences in detection
capabilities could be seen, even though well-known

Science & Military 1/2022

20

packer programs and malware files have been tested
against the latest and time-tested signatures and static
heuristic engines. Perhaps, the results would be
slightly different if other than basic settings of the
packers were applied. As only free trial and demo
versions of software products have been tried out,
some strong security features were not accessible.
Almost every packer program offers dozens
of options which as a result would produce unique
output files each time the different option is checked.
In this case, when ten software packers are used and
each possible feature would be tested, there might be
more than thousands of different outputs. Trying this
would be hugely time-consuming and the results
might be probably better, but not that significantly
different. It also needs to be mentioned that the
malware files were already obfuscated with several
techniques including packing which was probably
used even more times.

 A few interesting things could be observed in
Figure 4. Harmless Python executable file “py.exe”
was marked as a highly suspicious file or even
malware by several AV products after the packers
were applied. Sometimes packed malware and regular
software were evaluated as malicious by the same or
similar amount of AV engines. On this note, many of
the AV heuristic engines detected suspicious patterns
in packed software not because of the malicious
internals, but because of the unusual obfuscation and
protection layer provided by tested compressors and
protectors. Therefore, excessive protection measures
may trigger an alarm of some AV products even if the
software authors have good intentions, which in the
end may prove counter-productive in practical terms.
Such software solution would need to be included in
the AV white list.

Fig. 4 Impact of packers on AV detection rates (tested by using VirusTotal online service)
Source: authors.

Another interesting result was achieved with the

use of WinRAR compression, encryption and SFX
features when the only common AV desktop solution,
that caught compressed malware, was Bitdefender.
To explain the process of obfuscation, the malware
file was firstly compressed and encrypted with a
password. Then the encrypted malware file together
with a decryption script were the main parts of the
executable SFX (self-extracting) archive. When the

SFX archive was executed, it was set to immediately
run the decryption script and afterward the decrypted
malware. However, this process would be most likely
intercepted by AV software at a time when the known
malware file reveals itself in the memory. Despite that
unfair approach, it is a demonstration of how
unusually regular software can be misused for a bad
purpose.

Science & Military 1/2022

21

7 CONCLUSION

Even governments participate in writing malware
in the form of spying on rebels or sabotaging other
countries’ infrastructures to protect their own
interests. Whatever someone’s intentions are,
malware authors use several different techniques to
achieve the ultimate goal which is being undetectable
by any security vendor also known as FUD (Fully
Undetectable). The first step is usually to encrypt
malware with a strong and resilient protector
(preferably with the perpetrator’s unknown software
solution). Then, malware authors will privately scan
hundreds of unique copies of their malware
with multiple AV security products (similar
to VirusTotal) and choose only copies that can bypass
all of them. And finally, they use zero-day exploits
and cyber-attack techniques to increase the chance
of a successful infection [17].

Signatures checkers and static heuristic engines
are sometimes prone to mark a good file as malware.
For example, when one or two VirusTotal scanning
engines out of 70 identify suspicious files as a threat
and dynamic analysis doesn’t sound the alarm, it is
most likely a false positive case. If an experienced
user is sure that the file is false positive, packers could
be quite helpful when you use it as a form of hiding
the false positive files from your sensitive AV
software, however, the new layer of obfuscation can
again falsely trigger other AV solutions. Besides that,
these protection tools are handy in terms of keeping
your proprietary software away from prying eyes, but
they are also often misused by malware authors as a
form of obfuscation technique. Keep in mind that the
use of a protector might result in an unwanted false
positive detection, which is not acceptable during the
wide distribution of your own software solutions.

References

[1] KORET, J. and E. BACHAALANY. The

Antivirus Hacker's Handbook. John Wiley &
Sons, Inc., Indianapolis, 2015. ISBN 978-1-119-
02875-8. s. 360.

[2] What is Heuristic Analysis? [online]. [accessed
10. February 2022]. Available at:
https://usa.kaspersky.com/resource-
center/definitions/heuristic-analysis

[3] How it works? [online]. [accessed 10. February
2022]. Available at:
https://support.virustotal.com/hc/en-
us/articles/115002126889-How-it-works

[4] Malware analysis sandbox aggregation:
Welcome Tencent HABO! [online]. [accessed
10. February 2022]. Available at:
https://virustotal10.rssing.com/chan-
4742985/article104-live.html

[5] Explained: Packer, Crypter, and Protector.
[online]. [accessed 10. February 2022]. Available
at:
https://blog.malwarebytes.com/cybercrime/mal
ware/2017/03/explained-packer-crypter-and-
protector/

[6] Obfuscation: Malware’s best friend. [online].
[accessed 10. February 2022]. Available at:
https://blog.malwarebytes.com/threat-
analysis/2013/03/obfuscation-malwares-best-
friend/

[7] Themida. [online]. [accessed 10. February 2022].
Available at:

 https://www.oreans.com/Themida.php

[8] MEW. [online]. [accessed 15. February 2022].
Available at:
https://www.softpedia.com/get/Programming/Pa
ckers-Crypters-Protectors/MEW-SE.shtml

[9] MPRESS. [online]. [accessed 15. February
2022]. Available at:
https://www.autohotkey.com/mpress/mpress_we
b.htm

[10] PEtite Win32 Executable Compressor. [Online].
[accessed 15. February 2022]. Available at:
https://www.un4seen.com/petite/

[11] UPX. [online]. [accessed 15. February 2022].
Available at: https://upx.github.io

[12] WinRAR. [online]. [accessed 15. February 2022].
Available at: https://www.win-rar.com

[13] Enigma Protector. [online]. [accessed 15.
February 2022]. Available at:
https://enigmaprotector.com/

[14] About Obsidium. [online]. [accessed 15.
February 2022]. Available at:
https://www.obsidium.de/home

[15] Software protection system. [online]. [accessed
15. February 2022]. Available at:

PELock Software Protection & Software License
Key System

[16] VMProtect software. [online]. [accessed 15.
February 2022]. Available at:
https://vmpsoft.com

[17] Fully UnDetectable (FUD). [online]. [accessed
15. February 2022]. Available at:
https://www.neushield.com/learn/fully-
undetectable-fud/

1st Lt. Dipl. Eng. Andrej FEDÁK (PhD. student)
Armed Forces Academy of General M. R. Štefánik
Department of Computer Science
Demänová 393
031 01 Liptovský Mikuláš
Slovak Republic
E-mail: andrejfedak@gmail.com

Science & Military 1/2022

22

Prof. Dipl. Eng. Jozef ŠTULRAJTER, CSc.
Armed Forces Academy of General M. R. Štefánik
Department of Computer Science
Demänová 393
031 01 Liptovský Mikuláš
Slovak Republic
E-mail: jozef.stulrajter@aos.sk

Andrej Fedák was born in Žiar nad Hronom
in 1994. He received his engineering degree from the
Armed Forces Academy of General M. R. Štefánik
in Liptovský Mikuláš in the field of Military
Communication and Information Systems.
He is currently an officer of aeronautical ground
information systems - Air Force Headquarters.
His research is focused on computer networks,
information systems, information and cyber security.

Jozef Štulrajter works as a professor at the
Department of Informatics, Armed Forces Academy
of General M. R. Štefánik in Liptovský Mikuláš. He
graduated (Ing.) at the Military Technical College
in 1974. He obtained the degree of CSc. diploma
in Theoretical Electrical Engineering - Theory
of Circuits and Systems of the Military Academy
in Liptovský Mikuláš in 1992. His research interests
include Information and Communication Technology
(ICTs), computer architectures, image coding,
computer security.

